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Abstract In time dependent scheduling, various processing time functions are studied. Yet,

absolute value functions have surprisingly been omitted from the discussion. Such a pro-

cessing time function increases linearly on a job’s discrepancy from its ideal midtime. The

objective is to find a schedule that minimizes the makespan. This introduces the Discrepancy

Time Minimization Problem. This single machine scheduling problem with time dependent

processing times is motivated by the optimization of walking times at a car assembly line.

Its decision version is NP hard, as we show by reduction of the Even Odd Partition Problem.

For the variant of a known start time, we develop several heuristics. Further insights form

lower bounds and dominance rules for a branch and bound search. Numerical experiments

show the performance of our algorithms on problem instances of up to 60 jobs. For the vari-

ant with a common ideal midtime and a flexible start time, we present a polynomial time

algorithm.

Keywords Time Dependent Scheduling; Nonmonotonic Piecewise Linear Processing

Time; Convex Processing Time; Single Machine Scheduling; Assembly Line Worker Path

Minimization

1 Introduction

We consider a problem we encountered in production planning for car assembly lines. The

given production facility consists of a walkable conveyor, moving steadily along a straight

line, and shelves, placed statically along the conveyor. We focus on a single worker, working

at one car. The worker is responsible for a set of assembly jobs at the car. To gather required

material, the worker needs to interrupt each job and walk to its respective shelf aside the

conveyor, then walk back. The next job also requires material, from the same or another

shelf, and so forth for the remaining jobs. We assume that only the base length (productive

assembly time) of each job is constant. In contrast, the walking time of each job is time

dependent. If we manage to place each job right at the time when the conveyor passes the
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Fig. 1 Shelves are located directly, within an insignificant gripping distance, aside the conveyor. Therefore,

the worker only walks along a straight line in one dimension, along the conveyor direction. Furthermore, he

or she remains atop the conveyor at all times. For ease of walk time calculation, the coordinate system is

placed on the conveyor. Then, the shelves move relative to the conveyor along a straight line. The worker is

standing at the working point (WP). To pick up material for a job j ∈ J, the worker walks atop the conveyor

to the pick point at the shelf, which moves with the shelf. This point is reached at the time m j . Picking takes

no time in our model. Thus, after picking, the worker proceeds to walk from the exact same point back to the

working point.

job’s shelf, the walking times become minimum. Given a set of jobs, assigned to a set of

shelves, our objective is to find a schedule that minimizes the makespan.

The worker starts at a known start time at the working point on the conveyor. There, he

or she executes all jobs in set J sequentially, in an order that is to be determined. For each

job j ∈ J, the processing time p j is a variable that depends on the time the job is executed.

It consists of a constant work time, specified by base length l j, and a variable walk time. In

our application, the work time is split into two parts. The first part is the preparatory work.

Then, the worker walks to pick up the material, and, as the second work part, assembles it.

The duration of these parts may be different in each job. We assume an even split, dividing

the base length l j into two equal halves.

The walk time to a shelf depends on the conveyor position. The conveyor speed is con-

stant. As the worker exclusively walks atop the conveyor, we base the worker’s reference

coordinate system on the conveyor. By this change of viewpoint, the conveyor becomes

static, and everything else moves in relation to the conveyor. Hence, the shelves appear to

move along the conveyor (which in turn is static). The worker walks with a constant, uniform

velocity in all directions upon the conveyor. Hence, distances are of the same length in all

directions. Therefore, if the worker walks from his working point to a certain other point on

the conveyor, the way back has exactly the same length, in both time and space. This holds

regardless whether this point is forwards or backwards on the conveyor line. We apply this

principle for calculating the walk time to a shelf and back. Because the shelf moves relative

to the conveyor, the additional difficulty is to find out the point in time m j, for a job j ∈ J,

when the worker actually reaches the shelf. By the previous argument, both walks to a point

and back take the same time. Hence, the start and completion time are equidistant from m j.

Also, m j represents the middle between start and completion time of the walk. Therefore,

we call m j the midtime of a job j ∈ J. Note that, by prepending and appending the work time

halves l j/2, we do not alter the requirement that m j represents the midtime of a job. In the

following, we calculate the actual walk time.

Shelves are placed right at the conveyor. We take the simplifying assumption that the

distance, when measured orthogonally to the conveyor line, is insignificantly small, within

gripping distance. Therefore, no walk is necessary when the worker’s working point on the

conveyor is right in front of the shelf. Following that, the worker only needs to walk along a

straight line, which is coincident with the conveyor direction. Hence, the walk is measured

in only one dimension. This is visualized in Figure 1. The time when the shelf is right at

the working point of a job j ∈ J is measured when the midtime m j equals M j, for an ideal
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Fig. 2 The processing time p j = l j + a |m j −M j| of a job j consists of the base length l j and, scaled by

a ∈ (0,2), the difference between the ideal midtime M j and the midtime m = m j it is actually scheduled at.

Depicted are two job’s processing times p j, pk , each with a different base length (l j and lk), and a different

ideal midtime (M j and Mk).

time
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shelf
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Fig. 3 In the graphic, the abscissa displays the time. The ordinate displays the distance of an object (here: a

shelf) to the work position on the conveyor. It is measured in time units scaled by a ∈ (0,2). The factor a is

constant and depends on conveyor and worker speed. Relative to the conveyor, the dashed line represents the

position of a shelf over time. The solid line represents the worker position in time. The time span between

start time t j and completion time C j represents the processing time p j for a job j. It consists of two halves

of the base length l j , and, in between, the walk time to the shelf. The shelf is reached at time point m j . It is

apparent that the time for walking to the shelf equals the time for the way back. Therefore, the worker always

meets the shelf at the middle of the job’s processing time. Hence, as a result, m j = (t j +C j)/2.

time
shelf 1

shelf 2

shelf 3

C1 C2 C3C2 C1 C3

Fig. 4 This figure shows a worker’s position in two different job sequences, dark blue and light gray.

Multiple jobs are scheduled sequentially without overlaps and without idle times. The processing time of a

job depends on the time it is executed. Hence, the sequence (or ordering) of jobs determines Cmax. As in

Figure 3, each dashed line represents the movement of a shelf. From bottom to top, the lines respectively

belong to job 1, 2, and 3. In dark blue depicted is the movement of a worker who processes the jobs in

sequence 1 → 2 → 3. In light gray, it is 2 → 1 → 3, which takes longer because the total walk time is longer.

midtime M j which encodes the shelf position. Thereby, M j represents the point in time in

which the shelf passes the working point. A negative value for M j means that already at the

(global) start time, the shelf is behind the working point. The walk distance from and back

to the work point is an absolute value function of the difference between work point and

the moving shelf position. Hence, we factor in the conveyor and the worker speeds (vworker

and vconveyor) to obtain a slope a = 2 ·vworker/vconveyor (factor 2 for two ways), called growth



4 Florian Jaehn, Helmut A. Sedding

factor, of the walk time. We can safely assume that the worker walks faster than the conveyor

moves, thus 0 < a < 2. Then, the walk time is calculated by the term a |m j −M j|. We further

add the two base length halves. This results in the processing time p j = l j+a |m j−M j|. This

notion is depicted in Figures 2 and 3. Note that p j is defined in terms of the midtime here,

but it is possible to formulate this in terms of the job’s start time, as we show in section 3.

At the known start time, the worker starts to process one job after the other. Neither

overlaps, nor idle times are allowed. Hence, a job starts right after completion of the prede-

cessor, if there is one. Its processing time is decided according to its start time. Then, the

sequence (or ordering) of jobs iteratively determines all processing times. This is visualized

in Figure 4. It is required to minimize the completion time of the last job.

The paper is organized as follows: First, we review and discuss related work (section 2).

Then, we define the Discrepancy Time Minimization Problem setting in several variants

(section 3). Then, we describe essential properties for the variant with a single common

ideal midtime (section 4). These results are used to prove the NP hardness of the decision

versions of the problem and two subproblems (section 5). For the variant with a common

ideal midtime with no given start time, we present a polynomial time algorithm (section 6).

In section 7, we present several algorithms to solve the variant with a given start time. We

present a mixed integer programming (MIP) and a dynamic programming (DP) formulation.

Basing on the complexity proof, we develop several lower bounds. The DP algorithm is the

base for several dominance rules. Heuristics deliver an initial upper bound. These results

culminate in a branch and bound (B&B) search and its truncated, heuristic version, the

TrB&B. Computational experiments show each algorithm’s performance in a new testbed

for this problem (section 8).

2 Related Work

The problem we study is related to classical scheduling with objectives that regard earli-

ness/tardiness or barely tardiness, to time dependent scheduling with piecewise linear pro-

cessing time functions, and to applied research in the optimization of the car assembly.

The nonmonotonic piecewise linear processing time function reminds one of the objec-

tive function in the early/tardy scheduling problem. In three-field notation, it is described by

1 || ∑ |C j − d j|, where each job j has a given due date d j and, assigned by the schedule, a

completion time C j. With this objective, each job should ideally be placed close to its due

date. When deviating from the due date, the costs increase linearly. This is similar to our

problem. Here, each job should also be placed close to a certain point in time (the ideal

midtime). On deviation, not the costs though, but the processing time increases linearly as

well. Hence, in both problems, this deviation linearly increases the respective objective. The

major difference to our problem is that in the early/tardy scheduling problem, the process-

ing times are constant. Therefore, the order of scheduling a subset of jobs does not influence

their sum of processing times. In our problem however, the processing time of each job

is determined by its start time. Hence, the sum of processing times of a subset of jobs is

variable, as it additionally depends on their sequence. This property is revealed when, e.g.,

setting the start time of a certain job to the completion time of the preceding jobs. To op-

timize this completion time, it is not sufficient to know the optimum set of preceding jobs.

Instead, for this set, it is required to know the optimum sequence. The early/tardy scheduling

problem is NP hard, as Garey et al. (1988) show by reduction of the Partition Problem. Even

more, Wan and Yuan (2013) recently show NP hardness in the strong sense, by reduction of

the Three Partition Problem. Even the common due date variant is still NP hard (Hall et al.,
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1991). The known fastest exact solution methods for the early/tardy scheduling problem are

described by, e.g., Bülbül et al. (2007); Sourd and Kedad-Sidhoum (2008); Sourd (2009);

Tanaka et al. (2009). They all use time-indexed formulations, which are relaxed to construct

lower bounds. However, to apply this method to our problem, one would need to divide the

discretization step by a to avoid rounding errors. However, this looks impractical. For only

halving the discretization step, or equivalently doubling the processing times, Bülbül et al.

(2007) report that computation times increase fivefold. This indicates that these algorithms

are not directly applicable to our problem.

Another problem with a piecewise linear objective function is the tardiness problem 1 ||

∑max{0, t j − d j}. Note here, the function is monotonic. This problem is still ordinarily

NP hard (Du and Leung, 1990), but not strongly, as there exists a pseudopolynomial algo-

rithm (Lawler, 1977). For common due dates d = d j, the shortest processing time (SPT) rule

yields an optimum solution (Lawler and Moore, 1969). If each job’s tardiness is weighted,

Kellerer and Strusevich (2006) and Kacem (2010) describe fully polynomial time approxi-

mation schemes (FPTAS).

Piecewise linear start time dependent scheduling problems are studied before. To our

best knowledge, no one considers nonmonotonic processing time functions yet. But, there is

a trail of work on monotonic functions. Scheduling with job deterioration first gathered at-

tention when Browne and Yechiali (1990) introduced a time dependent scheduling problem.

Their stochastic model, if viewed as deterministic, condenses to 1 | p j = l j + a j t j | Cmax.

Here, each job j is given a base length l j and a growth factor a j, while a schedule sets the

job’s start time t j. They show that Cmax is minimized when sorting the jobs nondecreas-

ingly by l j/a j. However, in other applications, jobs deteriorate only after a certain critical

date d j, remaining in a good condition beforehand. This model, which can be denoted by

1 | p j = l j +a j max{0, t j −d j} |Cmax, was introduced by Kunnathur and Gupta (1990). They

provide a branch and bound algorithm and several heuristics. Wu et al. (2009) develop sev-

eral dominance rules and a lower bound for a branch and bound algorithm; they also state

two heuristics. Kononov (1997) proves NP hardness by reduction of the tardiness problem,

also for the case with a common a = a j. For the case with a common critical date d = d j,

Kubiak and van de Velde (1998) show NP hardness by reducing the partition problem and

present a heuristic, a branch and bound algorithm, and a pseudopolynomial algorithm. Cai

et al. (1998) discover a fully polynomial time approximation scheme. Kubiak and van de

Velde (1998) generalize this problem by introducing a bounded deterioration case, which

stops any processing time increase when starting a job after a common maximum deteriora-

tion date D > d which may be infinite. They present two pseudopolynomial algorithms. Ko-

valyov and Kubiak (1998) describe a fully polynomial time approximation scheme. Cheng

et al. (2003) look at an inverse problem: decreasing processing times until a common due

date d, precisely 1 | p j = l j −a j min{d, t j} |Cmax. They prove NP hardness by reduction of

the Partition Problem, and present a pseudopolynomial algorithm as well as several heuris-

tics. For the case of 2da j ≤ l j for all j, Ji and Cheng (2007) develop a fully polynomial time

approximation scheme. Several reviews of time dependent scheduling problems exist (Ali-

daee and Womer, 1999; Biskup, 2008; Cheng et al., 2004; Janiak et al., 2011), and we may

especially refer to Gawiejnowicz’s (2008) in-depth treatise.

Optimization problems that are related to scheduling problems are found, e.g., in vehi-

cle routing. A variant with only one vehicle is called traveling salesman problem. Here, the

distance between two cities maps to, e.g., a sequence dependent job processing time on a

single machine. In time dependent scheduling, the processing time depends not on the se-

quence but on the point in time that the job is executed. Variable distances which depend on

the node arrival time are introduced by Malandraki and Daskin (1992). They name it time
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dependent traveling salesman problem, although a definition with the same name existed

before (Picard and Queyranne, 1978). Also noteworthy is a vehicle routing problem with

time windows and a time-varying congestion where the distances depend on a piecewise

linear function of time by Ahn and Shin (1991). They recognize that the distance function

needs to fulfill the non-passing-property, which requires that it is not possible to overtake

a vehicle, thus the later a vehicle starts, the later it arrives. In our work, we do also have a

piecewise linear function for which the non-passing-property holds, as the worker is faster

than the conveyor. Ahn and Shin (1991) extend insertion, savings, and arc exchange heuris-

tics known before. Exact solution procedures are not discussed, as the main difficulty was

to find feasible instances at all. In our problem, the main difficulty is not to find feasible

solutions (all permutations of jobs are feasible), but to know that a solution is optimum.

On the application side, there exists a long thread of work about assembly line balanc-

ing (Boysen et al., 2007). In the classic sense, this problem is to optimize the assignments of

tasks (here: jobs) to work stations. Each station has a certain cycle time which must not be

exceeded. As a second constraint, each job has space requirements, e.g., for material place-

ment. Therefore, there are assembly line balancing problems which consider both time and

space constraints within a station (Bautista and Pereira, 2007; Chica et al., 2012). Following

this, to minimize worker walk times at each station, Boysen et al. (2015) identify line side

placement as a relevant planning problem, which concerns about positioning bins within a

station. This problem is addressed from an operations research view by Klampfl et al. (2006).

In our practical application, we consider the bin or shelf positions as given, and, accordingly,

change the sequence of jobs. Bukchin and Meller (2005) consider bin placement on a more

aggregate view of the whole assembly line, also respecting fill rates. To incorporate walk

times in the assembly line balancing procedure, one may turn to solution strategies which

take into account sequence-dependent setup times (Andrés et al., 2008; Martino and Pastor,

2010; Scholl et al., 2013). Although these setup times could be used for material pickings,

the movement of the conveyor belt would then be neglected. To still ensure feasibility of the

result, a safety factor would need to be added to all walk times. The more accurate it is pos-

sible to estimate the walk times, the smaller the safety factor can be. Therefore, in this work,

we establish a model for time dependent walk times which is able to factor in the moving

conveyor. The walk time can amount to a significant part of the cycle time (Boysen et al.,

2015). Therefore, it is important to better estimate and, consequently, reduce walk times.

3 Problem Definition

The formal definition of our practical problem considers distinct ideal times, representing

distinct shelf positions. A subproblem is stated with a common ideal midtime; in this case

there is only one shelf. In section 5, we show that this case is NP hard. Also, we define

a slightly generalized problem, where the start time is a variable. There, the objective is

to minimize the makespan, which is the time span between start and completion of the

schedule. This problem is NP hard as well, as we will show. Interestingly, this generalized

problem in combination with only one common ideal time turns out to be polynomially

solvable (section 6).

Definition 1 (Discrepancy Time Minimization Problem) Given a growth factor a ∈ (0,2)
and a set of n jobs J, where each job j ∈ J is given a base length l j ∈ R≥0 and an ideal

midtime M j ∈ R.

A schedule (S, t) comprises the job sequence, which is a bijective function S : J 7→ P

that assigns each job a position in set P := {1, . . . , |J|}, and a start time t ∈ R. From a
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given schedule, the values for all midtimes and all processing times are derived. For this,

the start time t j and the completion time C j of each job j ∈ J is calculated. The start time

of the first job equals the start time t, hence tS−1(1) = t; the start time of each remaining job

equals the completion time of the preceding job, hence tS−1(i) = CS−1(i−1) for i = 2, . . . ,n.

The completion time C j of a job j ∈ J is calculated by

C j =C j(t j) :=















t j +
l j −a(t j −M j)

1+a/2
if t j ≤ M j − l j/2,

t j +
l j +a(t j −M j)

1−a/2
if t j > M j − l j/2.

(1)

Then, a job’s midtime is m j = (t j +C j)/2. A job’s processing time is stated by p j := l j +
a |m j −M j|. The last completion time is Cmax(S, t) :=CS−1(n).

The objective is to find a schedule (S, t) that minimizes the makespan, denoted by

Q(S, t) := Cmax(S, t)− t. This problem is stated as 1
∣

∣p j = l j + a |m j −M j|
∣

∣makespan, we

abbreviate this by fDTMP (where ‘f’ indicates the flexible start time).

The DTMP problem sets a fixed start time t, with t = 0 if not further specified. It is

stated as 1
∣

∣p j = l j +a |m j −M j|
∣

∣Cmax. Here, the makespan equals Cmax.

We denote the subproblems where all jobs are given the same common ideal mid-

time M =M j, j ∈ J, as cDTMP and cfDTMP, respectively (where, ‘c’ indicates the common

ideal midtime).

The decision version of each problem variant asks, for some given value q ∈ R≥0,

whether there exists a schedule with Q(S, t)≤ q.

One first insight is: p j = l j ⇐⇒ m j = M j. Furthermore p j > l j ⇐⇒ m j 6= M j. In all

cases, p j ≥ l j ≥ 0. Note that the definitions of t j, C j, m j, and p j ensure that p j = l j +a |m j −
M j|=C j − t j.

The allowance of idle times would only increase the makespan Q(S, t), because C j(t j)
is monotonically increasing with t j, as d

dt j
C j(t j)≥

2−a
2+a

> 0. Thus, the DTMP disallows idle

times between jobs. Hence, Q(S, t) = ∑ j∈J p j.

Note that we allow for negative start times, especially in the fDTMP. This is necessary, as

the start time shall not impose any restriction on the scheduling of the jobs. Hence, negative

values for t j, C j, and m j may occur.

4 Problem Properties

In this section, we present properties of the cDTMP, and later the cfDTMP.

4.1 cDTMP Properties

First, we look at properties of cDTMP instances. Thus, all jobs have the common ideal

midtime M, and a schedule starts at a given time t. If M is before or at t, i.e. M ≤ t, we

are actually able to express the makespan in a closed-form formula. Figure 5 visualizes this

situation.

Definition 2 Given a cDTMP instance with n jobs and a schedule (S, t). For any x,y ∈ R,

define f (x) :=
(

2+a
2−a

)x
, g(x) := 2

2−a
f (x), and Q0(S,y) := y f (n)+∑ j∈J l j g(n−S( j)).
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y 1 2 3 4

M t Q0(S,y) := y+Q(S, t)

S

Fig. 5 Given a set of jobs J with a common ideal midtime M starting at t ≥ M, and a sequence S. Then, y =
t −M. Property 2 introduces the closed-form expression y+Q(S, t) = Q0(S,y) = y f (n)+∑ j∈J l jg(n−S( j)).

Property 1 Given a cDTMP instance and a schedule (S, t) with tM. Let y = t −M and

n = |J|. Then, y+Q(S, t) = Q0(S,y) = y f (n)+∑ j∈J l j g(n−S( j)) = y f (n)+Q(S,M).

Without loss of generality, assume J = {1, . . . ,n} and S( j) = j for j ∈ J.

Proof For ease of description, we express the duration y by a virtual job 0, which starts at M

and completes at t, with processing time p0 = y. Thus, the job set extends to J′ = {0}∪ J =
{0,1, . . . ,n}. Therefore, we define schedule (S′,M) with S′( j) = j + 1, j ∈ J′. Now, job 1

starts at t = M+ p0.

We want to know the value of Q0(S,y) = y+Q(S, t) = Q(S′,M) = ∑
n
j=0 p j. For this, we

need to know the value of p j for all j ∈ J′. We begin with the definition p j = l j+a |m j−M j|.
Knowing that M j = M and m j ≥ M, we simplify it to p j = l j +a(m j −M). We then express

m j −M in terms of the job’s start time t j:

m j −M = p j/2+ t j −M (2)

=

{

p j/2 if j = 0

p j/2+C j−1 −M if j > 0
(3)

= p j/2+
j−1

∑
k=0

pk. (4)

Thus,

p j = l j +a(m j −M) (5)

⇐⇒ p j = l j +a

(

p j

2
+

j−1

∑
k=0

pk

)

(6)

⇐⇒
(

1−
a

2

)

p j = l j +a

j−1

∑
k=0

pk (7)

⇐⇒ p j =
2

2−a

(

l j +a

j−1

∑
k=0

pk

)

. (8)

Comparing p j to p j−1 for j ∈ J, we observe:

p j − p j−1 =
2

2−a

(

l j − l j−1 +a

j−1

∑
k=0

pk −a

j−2

∑
k=0

pk

)

(9)

⇐⇒ p j − p j−1 =
2

2−a
(l j − l j−1 +ap j−1) (10)

⇐⇒ p j −
2+a

2−a
p j−1 =

2

2−a
(l j − l j−1). (11)
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This expresses p j as a recurrence relation, with the base case p0 = y. We convert this to

a closed-form expression. Let, using (8), l0 =
2−a

2
y. Let Φ j =

p j

f ( j) . From (11), for j ∈ J,

p j

f ( j)
−

2+a
2−a

p j−1

f ( j)
=

2
2−a

(l j − l j−1)

f ( j)
(12)

⇐⇒
p j

f ( j)
−

p j−1

f ( j−1)
=

2
2−a

(l j − l j−1)

f ( j)
(13)

⇐⇒ Φ j −Φ j−1 =
2

2−a
(l j − l j−1)

f ( j)
. (14)

This recurrence begins with Φ0 = p0 = y, hence

Φ j −Φ0 =
j

∑
k=1

Φk −Φk−1 (15)

⇐⇒ Φ j −P0 =
j

∑
k=1

2
2−a

(lk − lk−1)

f (k)
(16)

⇐⇒
p j

f ( j)
= y+

j

∑
k=1

2
2−a

(lk − lk−1)

f (k)
(17)

⇐⇒ p j = y f ( j)+
2

2−a

j

∑
k=1

(lk − lk−1) f ( j− k). (18)

This is the closed form expression for p j. We transfer this result to calculate Q0(S,y).
We append a virtual job n+1 with ln+1 = 0. When stating the processing time of job n+1,

we observe that with (8), pn+1 =
2a

2−a ∑
n
j=0 p j =

2a
2−a

Q0(S,y). Therefore, using (18),

Q0(S,y) =
2−a

2a
pn+1

=
2−a

2a
y f (n+1)+

1

a

n+1

∑
j=1

(l j − l j−1) f (n+1− j)

=
1

a

(

l0 f (n+1)+
n+1

∑
j=1

(l j − l j−1) f (n− j+1)

)

=
1

a

n

∑
j=0

l j ( f (n− j+1)− f (n− j))

=
1

a

n

∑
j=0

l j

(

2+a

2−a
−1

)

f (n− j)

=
n

∑
j=0

l j

2

2−a
f (n− j)

= l0
2

2−a
f (n)+

n

∑
j=1

l j g(n− j)

= y f (n)+
n

∑
j=1

l j g(n− j).

Furthermore, Q0(S,y) = y f (n)+Q0(S,0) = y f (n)+Q(S,M). ut
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As the processing time grows symmetrically both before and after the ideal midtime, Q0

can be used symmetrically on schedules that complete before a common ideal midtime M.

4.2 cfDTMP Properties

In the following, we consider the cfDTMP. This problem variant is closely related to op-

timum early/tardy scheduling with a nonrestrictive (i.e., large) common due date, thereby

allowing idle time before the first job, as in Kanet (1981). There, any optimum schedule

adheres to a V-shaped ordering. This means that all jobs that complete before (after) the due

date are sorted nondecreasingly (nonincreasingly) by processing time. Garey et al. (1988)

present a proof on the optimality of such a V-shape, and introduce a number of further prop-

erties of the problem. We show similar properties in the cfDTMP (Property 3-7), although

the proofs are more elaborate because of the variable processing time. First we define several

terms, which are visualized in Figure 6.

Definition 3 Given a cfDTMP instance with a job set J with the common ideal midtime M.

For schedule (S, t), we define set A = { j ∈ J | m j < M} consisting of jobs before M and

set B = { j ∈ J | m j > M} consisting of jobs after M.

Note that there might exist a job j ∈ J where m j = M, which thus is neither in A nor in

B. If such a job exists, we denote it as χ .

We also define an index A : {1, . . . , |A|} 7→ J on A, as well as an index on B. The index

on A represents the order of the actual midtime such that for i, j ∈ {1, . . . , |A|} and i < j, we

have mA(i) > mA( j). Similarly for i, j ∈ {1, . . . , |B|} and i < j, we have mA(i) < mA( j).

M

mχ

mφ

A = Ā χ B = B̄

A = Ā φ B̄

yA yB

Fig. 6 If existing, for job χ there is mχ = M. If χ is nonexistent, the notation defines job φ which begins

before and completes at or after M.

The tasks for a given schedule, suppose χ exists, are then indexed as follows:

A(|A|), . . . ,A(2),A(1),χ,B(1),B(2), . . . ,B(|B|).

Even if there is no χ , the jobs obviously center around M in an optimum schedule.

In any case, there must always exist a job, denoted as φ , that lies over M: Define job φ

with tφ < M ≤ Cφ . Define the overlaps before and after M as yA := M −mφ + pφ/2 and

yB := mφ −M+ pφ/2. Note that the overlaps are both nonnegative and yA + yB = pφ . Job φ

belongs to either A or B. Further note that if job A(1) completes at M and job B(1) starts at

M, then φ = A(1).
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Subsets of A,B that exclude job φ are defined as Ā := A\{φ} ⊆ A and B̄ := B\{φ} ⊆ B.

The makespan Q(S, t) of a given optimum schedule can be split at M into two parts: the

makespan before M is Q0(Ā,yA), and the makespan after M is Q0(B̄,yB). As A and B form a

partition of J \{φ}, the makespan is Q(S, t) = Q0(Ā,yA)+Q0(B̄,yB).
We now show that in a solution with minimum makespan Q(S, t), the jobs in A and B

follow a specific order.

Property 2 (V-Shape) An optimum cfDTMP schedule (S, t) arranges all jobs in a V-shape,

which means for two jobs A(i),A( j) ∈ A with i < j we have li ≤ l j, and the same holds for

B.

Proof Assume for a contradiction that there is an optimum schedule, which is not V-shaped.

Then, this schedule can be improved as follows.

We know yA ≤ pφ .

The value of yA is largest if φ completes at M. In this case, yA = pφ and Q0(Ā,yA) =

Q0(A,0) = 0 · f (|Ā|)+∑
|A|
j=1 lA( j) g(|A|− j).

Because g(x) is a monotonically increasing function, Q0(A,0) is minimum if the list of

jobs A is ordered nonincreasingly by base length. Thus, for two jobs i, j ∈ {1, . . . , |A|} and

i < j we have lA(i) ≤ lA( j).

The case yA < pφ can be visualized by an artificial job 1′ with p1′ = yA completing at

M, thus l1′ < l1. As a smaller length for A(1) does not inflict the sort index, the schedule

remains minimum.

The same argument follows symmetrically for B. ut

Now we show that for φ , the actual midtime mφ is M. In consequence, job χ exists. For

this, we look at instances with an odd number of jobs only.

Property 3 Given a cfDTMP instance with an odd number of jobs. Then, job χ exists in

any optimum schedule.

Proof (by contradiction) Suppose an optimum schedule (S, t) with no job χ , thus yA 6= yB.

As the total number of jobs n= 2h+1 is odd, we have |A|+ |B|= 2h+1. Thereby, either

|A|< |B| or |A|> |B|. These two cases will be further split into yA < yB and yA > yB.

Case (1) where |A|< |B| and yA < yB:

In this case, φ = B(1), as visualized in Figure 7.

M

φ(S, t)

yA yB

χ ′

y′A y′B

(S, t ′)

Fig. 7 Proving Property 3, case (1). Schedule (S, t ′) starts earlier than (S, t), such that φ becomes χ ′. The

makespan of (S, t ′) is smallest.
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M

φ π(S, t)

yA yB

A′(1) π ′(S, t ′)

A′′(1) χ ′′(S, t ′′)

y′′A y′′B

Fig. 8 Proving Property 3, case (2). Schedule (S, t ′) starts earlier than (S, t), such that π starts at M. Fur-

thermore, schedule (S, t ′′) starts earlier than (S, t ′), such that π ′ = π becomes χ ′′. The makespan of (S, t ′′) is

smallest.

Define schedule (S, t ′) with t ′ < t such that m′
φ = M, A′ = A and B′ = B̄. Here, y′A = y′B.

Thus, χ ′ exists.

As there is no job χ in (S, t), the inequation l j < p j holds for all j ∈ J, and we can say

that y′A +y′B < yA +yB. Knowing that |A|< |B| ⇐⇒ f (|A|)< f (|B|) ⇐⇒ f (|Ā|)≤ f (|B̄|),
we show:

y′A + y′B < yA + yB

⇐⇒ y′A − yA < yB − y′B

⇐⇒ f (|Ā|)(y′A − yA) < f (|B̄|)(yB − y′B)

⇐⇒ f (|Ā|)y′A − f (|Ā|)yA < f (|B̄|)yB − f (|B̄|)y′B

⇐⇒ f (|Ā|)y′A + f (|B̄|)y′B < f (|Ā|)yA + f (|B̄|)yB.

Now we compare the makespans Q(S, t) and Q(S, t ′):

Q(S, t ′) = Q0(Ā,y
′
A)+Q0(B̄,y

′
B)

= f (|Ā|)y′A +Q(Ā,M)+ f (|B̄|)y′B +Q(B,M)

< f (|Ā|)yA +Q(Ā,M)+ f (|B̄|)yB +Q(B,M)

= Q0(Ā,yA)+Q0(B̄,yB)

= Q(S, t).

Concluding, we see that Q(S, t ′)< Q(S, t). Therefore, (S, t) is not an optimum schedule.

Case (2) where |A|< |B| and yA > yB:

In this case, φ = A(1), see Figure 8.

As φ ∈ A and |A|< |B|, it follows |B| ≥ 2. Furthermore, in this case |Ā|= |A|−1, hence

|Ā|< |B|−1.

Now we calculate the values of yA and yB. As yA > yB, there is mφ < M, thus pφ =
lφ +a(M−mφ ). Therefore,

yA = M−mφ + pφ/2

= M−mφ +
(

lφ +a(M−mφ )
)

/2

= (a/2+1)(M−mφ )+ lφ/2,
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yB = mφ −M+ pφ/2

= mφ −M+
(

lφ +a(M−mφ )
)

/2

= (a/2−1)(M−mφ )+ lφ/2.

The difference is yA − yB = 2(M−mφ ), thus yB = yA −2(M−mφ ).
To show the following inequality, we use γ := 2−a and δ := 2+a.

δ (M−mφ )−δ (M−mφ ) = 0

⇐⇒ 2yA −δ (M−mφ ) = lφ

⇐⇒ 4yA −2δ (M−mφ ) = 2lφ

⇐⇒ yAγ + yAδ −2δ (M−mφ ) = 2lφ

⇐⇒ yAγ + yBδ = 2lφ

⇐⇒ (2lφ/γ − yA)(γ/δ ) = yB

⇐⇒ (2lφ/γ − yA) f (−1) f (|B|) = yB f (|B|)

⇐⇒ (2lφ/γ − yA) f (|B|−1) = yB f (|B|)

⇐⇒ (2lφ/γ − yA) f (|Ā|) < yB f (|B|)

⇐⇒ (2lφ/γ) f (|Ā|) < yA f (|Ā|)+ yB f (|B|).

Define schedule (S, t ′) with the smallest t ′ < t such that still A′ = A and B′ = B. Then,

y′A = p′φ , y′B = 0, and B′ = B̄′. For the value of p′φ , we mirror Cφ (M) to the left hand side of

M, thus Cφ (M)−M = 2lφ/γ = p′φ .

Q(S, t ′) = Q0(Ā
′,y′A)+Q0(B̄

′,y′B)

= Q0(Ā, p′φ )+Q0(B,0)

= Q0(Ā,2lφ/γ)+Q(B,M)

= Q(Ā,M)+Q(B,M)+(2lφ/γ) f (|Ā|)

< Q(Ā,M)+Q(B,M)+ yA f (|Ā|)+ yB f (|B|)

= Q0(Ā,yA)+Q0(B,yB)

= Q0(Ā,yA)+Q0(B̄,yB)

= Q(S, t).

Therefore, Q(S, t ′)< Q(S, t).
Define schedule (S, t ′′) with t ′′ < t ′ such that the actual midtime of job π := B(1) is

m′′
π = M, thus χ ′′ = jπ and y′′A = y′′B = p′′π/2 = lπ/2. Also, B′′ = B̄′ = B\{π}. We compare

Q(S, t ′′) and Q(S, t ′), using the inequations lπ < p′π and |A| ≤ |B|−1:

Q(S, t ′′) = Q0(Ā
′′,y′′A)+Q0(B̄

′′,y′′B)

= Q0(A, lπ/2)+Q0(B̄
′, lπ/2)

< Q0(A, p′π/2)+Q0(B̄
′, p′π/2)

= Q(A,M)+Q(B̄′,M)+ f (|A|) p′π/2+ f (|B|−1) p′π/2

≤ Q(A,M)+Q(B̄′,M)+ f (|B|−1) p′π

= Q0(Ā
′,y′A)+Q0(B̄

′,y′B)

= Q(S, t ′).
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Concluding, we see that Q(S, t ′′)< Q(S, t). Therefore, (S, t) is not an optimum schedule.

The case yA = yB is not needed as it would imply that χ already exists in (S, t). The case

where |A|> |B| follows the same scheme as the other cases, with A and B swapped.

Therefore, in all cases, a schedule (S, t) with mφ 6= M is not an optimum schedule. ut

Property 4 Given a cfDTMP instance with an odd number of jobs. In any optimum sched-

ule, the sets A and B have the same cardinality |A|= |B|.

Proof Given an optimum schedule (S, t), we first look at the case |A|< |B|. By Property 3,

χ exists. Thus |A|+ |B| is even. Given that |A|< |B| we deduct that |A|< |B|−1.

We now create a schedule (S, t ′′) with t ′′ < t, such that χ ′′ =B(1) and A′′(1) = χ , thereby

|A′′|= |B′′|. For this, we now show that Q(S, t ′′)< Q(S, t).
First, we define schedule (S, t ′) with t ′ < t, such that A′(1) = χ completes at M and

B′(1) = B(1) starts at M. Thus, χ ′ does not exist. Still |A| < |B|, but the difference lessens

to |A′|= |B′|+1.

With schedule (S, t ′) and (S, t ′′) defined, we can now follow the argumentation of the

previous proof, case (2), but now asserting values yA = yB. In this way, we can show that

Q(S, t ′′)< Q(S, t).
Therefore, schedule (S, t) cannot be optimum.

The same conclusion can be made for the case |A| > |B| where the argumentation is

similar. ut

We now look at what happens if jobs A(i) and B(i) are swapped in the sequence S,

thereby defining sequence S(i).

Property 5 Given a cfDTMP instance with n = 2h+ 1 jobs j ∈ {0, . . . ,2h} and a sched-

ule (S, t) with |A| = |B| = h and χ = 0. For some i ∈ {1, . . . ,h}, define schedule (S(i), t(i))
derived from (S, t) such that mχ = M remains, but jobs A(i) and B(i) swap positions:

A(i)(i) = B(i) and B(i)(i) = A(i). Then, the makespans of both schedules are equal.

Proof Because χ = 0 and |A|= |B|= h we know that

Q(S, t) = Q0(A, lχ/2)+Q0(B, lχ/2)

= lχ f (h)+
h

∑
j=1

lA( j) g(h− j)+
h

∑
j=1

lB( j) g(h− j)

= lχ f (h)+
h

∑
j=1

(lA( j)+ lB( j)) g(h− j).

As swapping the summands lA(i) and lB(i) does not affect the result of the addition, we can

conclude that Q(S(i), t) = Q(S, t ′). ut

Now the question is, which of the jobs becomes job χ .

Property 6 Given a cfDTMP instance with n = 2h+ 1 jobs j ∈ {0, . . . ,2h} where l0 =
min{l j | j = 1, . . . ,2h}. In an optimum schedule then χ = 0 holds.

Proof As j = 0 has the minimum base length, and because we know that in an optimum

schedule, such a job is behind all jobs in A, and before all in B, we know that χ = 0. ut

We now consider the final property that renders a cfDTMP schedule optimum.
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Property 7 Given a cfDTMP instance with n = 2h+1 jobs {0, . . . ,2h}, sorted nondecreas-

ingly by base length. Then, for an optimum schedule (S, t), there is χ = 0, |A|= |B|, and for

i= 1, . . . ,h the set {A(i),B(i)}= {2i,2i−1}. The makespan is Q(S, t) = lχ f (h)+∑
h
i=1(l2i+

l2i−1) g(h− j).

Proof We remarked in Property 5 that if (S, t) is optimum, any swapped schedule (S(i), t(i))
for i = 1, . . . ,h is optimum as well. This is true for any composition of swappings. Thus,

the following sets contain the same elements: {A(i),B(i)}= {2i,2i−1} for i = 1, . . . ,h. We

further know by Property 2 that in an optimum schedule, both A and B must be ordered non-

decreasingly by base length. Hence, we can now deduce the job sequence S. The makespan

Q(S, t) then is obviously calculated by the formula in the proof of Property 5, thereby setting

t = M−Q0(A,0). ut

Note that, for n = 2h+1 jobs, there exist 2h different optimum schedules, as for each of

the h job pairs, a binary decision is to be made.

5 NP Completeness Proofs

We use the properties of the cfDTMP from section 4 to prove NP hardness of the cDTMP,

and its generalization, the DTMP. Moreover, the fDTMP turns out to be NP hard, even with

its flexible start time. However, the subproblem cfDTMP with a common ideal time turns

out to be in P (see section 6).

Garey et al. (1988) used several properties of the early/tardy scheduling problem with

a common due date to prove NP hardness of the general early/tardy problem in its decision

version. The reduction uses a partition problem. In the corresponding scheduling instance,

the solution divides the partition jobs into two halves around their common due date, thereby

achieving an optimum V-shape. A further requirement is that a blocker job, which has a

different due date, is neither early nor tardy. This ensures, for any No-instance, that the

minimum objective is above threshold. Our proof follows a similar reduction of a partition

problem. Meanwhile, the steps are different, due to the time dependent processing times.

Moreover, our proof is not in need of blocker jobs. Therefore, it shows that even the cDTMP

decision problem (with one common ideal time) is NP hard. For the fDTMP however, (only)

one further blocker job with another ideal time is needed to show NP hardness.

In section 5.1, we introduce a modification of the Even Odd Partition Problem. This

problem is used in section 5.2 to show the NP hardness of the decision versions of the

cDTMP, the DTMP, and the fDTMP.

5.1 A Modified Even Odd Problem

From the well-known Even Odd Partition Problem (Garey et al., 1988), we define a variant.

We then show that this modification is NP hard.

Definition 4 (Even Odd Partition Problem (Garey et al., 1988))

Instance: Given a set of n = 2h positive integers Y = {y1, . . . ,yn} where y j < y j+1 for

all j = 1, . . . ,n−1.

Question: Is there a partition of Y into subsets Y1 and Y2 := Y \Y1 such that ∑y∈Y1
y =

∑y∈Y2
y, and such that for each i = 1, . . . ,h, the set Y1 contains exactly one element of

set {y2i−1,y2i}?
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The modification entails the additional requirement that the given n = 2h elements x j,

j = 1, . . . ,n, are sorted increasingly even when divided by 1+b
2

bh−b j/2c for a finite b > 1.

Definition 5 (Modified Even Odd Partition Problem)

Instance: Given a finite rational number b > 1 and a set of n = 2h positive integers

X = {x1, . . . ,xn}. Let B0 = 0 and Bi =
1+b

2
bh−ix2i for all i = 1, . . . ,h−1. Assume x2i+1 > Bi

and x2i+2 > x2i+1 for all i = 0, . . . ,h−1.

Question: Is there a partition of X into subsets X1 and X2 := X \X1 such that ∑x∈X1
x =

∑x∈X2
x, and such that for each i = 1, . . . ,h, the set X1 contains exactly one element of

set {x2i−1,x2i}?

The division of a nondecreasing number series by a nonincreasing number series results

in a nondecreasing number series. For i = 1, . . . ,n, the given xi’s are ordered nondecreas-

ingly, and the number series 1+b
2

bh−bi/2c is ordered nonincreasingly. Hence, the xi’s are still

ordered nondecreasingly even when divided by 1+b
2

bh−bi/2c.

We now construct a reduction of the Even Odd Partition Problem to the Modified Even

Odd Partition Problem. Lee and Vairaktarakis (1993, p. 290) made a similar reduction for a

different definition of Bi, namely Bi = ∑
i
k=1 x2k for i = 0, . . . ,h−1.

Theorem 1 The Modified Even Odd Partition Problem is NP hard.

Proof Given an instance of the Even Odd Partition Problem by the set Y = {y1, . . . ,yn}.

From Y , we iteratively construct an instance X of the Modified Even Odd Partition Problem

as follows: For Bi defined as above, let xi = Bb(i−1)/2c + yi for i = 1, . . . ,n. Then, for all

i = 0 . . .h− 1 we have x2i+2 > x2i+1 and x2i+1 > Bi fulfilled. Thus, instance X satisfies the

constraints of the Modified Even Odd Partition Problem. Also, this construction can be done

in polynomial time.

Then, we need to show that instance Y is a Yes-instance if and only if X is. Suppose

Y1,Y2 is a solution for Y . Let I1, I2 be the set of indices of the elements of Y1,Y2 respectively,

ordered in increasing order. Then,

∑
i∈I1

yi = ∑
i∈I2

yi

⇐⇒

(

∑
i∈I1

Bb(i−1)/2c

)

+

(

∑
i∈I1

yi

)

=

(

∑
i∈I2

Bb(i−1)/2c

)

+

(

∑
i∈I2

yi

)

⇐⇒ ∑
i∈I1

(Bb(i−1)/2c+ yi) = ∑
i∈I2

(Bb(i−1)/2c+ yi)

⇐⇒ ∑
i∈I1

xi = ∑
i∈I2

xi.

Define X1 = {xi | i ∈ I1} and X2 = {xi | i ∈ I2}. Then, ∑xi∈X1
xi = ∑xi∈X2

xi. As well, X1

contains precisely one of {x2i−1,x2i} because Y1 contains precisely one of {y2i−1,y2i} for all

i = 1, . . . ,n. Hence, the sets X1,X2 constitute a Yes-instance for X .

Conversely, if X1,X2 is a Yes-instance for X , the above equivalences mean that the sets

Y1 = {yi ∈ Y | vi ∈ X1} and Y2 = {yi ∈ Y | xi ∈ X2} constitute a solution of Y . Therefore, X

is a Yes-instance if and only if Y is. ut
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5.2 Problem Reduction

We show the NP hardness of the decision version of the DTMP and two variants, the cDTMP

and the fDTMP. The properties from section 4 are a prerequisite. The proof is made by

reducing the Modified Even Odd Partition Problem introduced in section 5.1. Please note

that the latter problem is defined for rational numbers only, in order to be computable on a

nondeterministic Turing machine (or an equivalent). The DTMP instead allows real numbers

in the input, which is more general. However, as this formulation is a generalization, it still

allows showing NP hardness by reduction.

Theorem 2 The decision versions of the cDTMP and the DTMP are NP hard.

Proof We begin with an instance of the Modified Even Odd Partition Problem (see Def-

inition 5), given by a finite rational number b > 1 and a set of n = 2h positive integers

X = {x1, . . . ,xn} obeying the required constraints.

Now, we can define an instance of the cDTMP:

– We know b > 1. Let a := 2b−2
b+1

, thus a ∈ (0,2) as required. Solving a for b, we have

b = 2+a
2−a

. Moreover, 1+b
2

bx = 2
2−a

bx = 2
2−a

f (x) = g(x) (see Definition 2) for all x ∈ Z.

– Then, we define the set J of n+ 1 jobs J = {0, . . . ,n} with lengths l0 = 0 and l j :=
x j/g(h−b j/2c) for j = 1, . . . ,n. Hereby, the jobs 0, . . . ,n are sorted by nondecreasing

base length.

– We deduct from Property 7, that if we interpret a and J with an arbitrary common ideal

midtime as a cfDTMP instance, then an optimum schedule of the jobs J results in a

makespan of q := l0 f (h)+∑
h
i=1(l2i + l2i−1) g(h− j). Using q, we set a common ideal

midtime M j = M = q/2 for all jobs j ∈ J.

– Furthermore, we set the start time t = 0.

Finally, we ask whether there is, for the given problem, a schedule (S, t) where for the

objective function Q(S, t) = ∑
n
j=0 p j ≤ q holds?

j3 j2 j1 j4

M = q/2

(S, t)

j0
q

Q0(A,0) Q0(B,0)

j3 j1

j0

j2 j4(S′, t)

Q0(A
′,0) Q0(B

′,0)

t = 0

Fig. 9 The Modified Even Odd Partition Problem can be reduced to the cDTMP, and the generalized DTMP.

In this example, with n = 4 elements, it corresponds to scheduling 5 jobs j0, . . . , j4, where j0 has l0 = 0,

such that Cmax ≤ k. If the jobs are nondecreasingly sorted by base length, a minimum makespan schedule

is achieved by placing j0 in the middle, and alternately prepending and appending the following jobs. Now,

Cmax ≤ k if and only if j0 is at M, as in the visualized schedule (S, t).

The optimum makespan q can obviously only be reached if p0 = l0 = 0, implying

m0 = M. This happens if and only if the makespan can be split into two equal sized parts
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Q0(A,0) = Q0(B,0) = q/2 = M (see Figure 9), creating a partition of J \{0} into sets A,B:

Q0(A,0) = Q0(B,0)

⇐⇒
h

∑
i=1

lA(i) g(h− i) =
h

∑
i=1

lB(i) g(h− i)

⇐⇒
h

∑
i=1

xA(i) =
h

∑
i=1

xB(i).

The last equation solves the Modified Even Odd Partition Problem instance, concluding

the problem reduction.

Therefore, the decision versions of the cDTMP, and the generalized DTMP are NP hard.

Furthermore, as, for a given (S, t) the question Q(S, t) ≤ k can be answered in polynomial

time, they both are NP hard. ut

Theorem 3 The decision version of the fDTMP is NP hard.

Proof From a Modified Even Odd Partition Problem instance, construct a fDTMP instance

equivalent to the cDTMP instance in the proof of Theorem 2, except for the specification

of t, which is a variable here. Add one more job with zero base length to J: job n + 1

with ideal midtime Mn+1 = 0. Then we ask the question whether there exists a schedule

with Q(S, t) ≤ q. Remember that the optimum makespan of the jobs in set {1, . . . ,n} ⊂ J

is q. Therefore, the answer to the question is Yes, if and only if job n+ 1 can be placed

at its ideal midtime, thus having zero processing time. This only happens when the job

subset {1, . . . ,n} can be partitioned in sets A,B such that Q0(A,0) = Q0(B,0) = q/2. The

reduction then continues like the proof of Theorem 2. Therefore, the decision version of the

fDTMP is NP hard. We remark that even an idle time would be of no use. This could, e.g.,

be inserted between job n+ 1 and the others, in order to set pn+1 = 0. But as previously

noted, for the given |a|< 1, any idle time only increases the makespan. ut

6 Exact Polynomial Time Algorithm for the cfDTMP

While the cDTMP and the fDTMP are NP hard, the cfDTMP is solvable in polynomial time.

We show this by presenting an exact polynomial time algorithm. It is later used in a lower

bound for the DTMP (see section 7.4.8). As a side note, we remark that this problem is

similar to the classic scheduling problem of minimizing early/tardiness with idle time and

a nonrestrictive (i.e., large) common due date. This problem is studied by Kanet (1981), he

developed a polynomial time algorithm for it.

Property 7 is defined for cfDTMP instances with odd numbers of jobs only. Hence, we

need to specify optimum schedules for instances with even numbers of jobs.

Property 8 Given a cfDTMP instance with two jobs {1,2}. Then, any schedule (S, t) with

m1 ≤ M ≤ m2 has a minimum makespan, namely Q(S, t) = l1+l2
1−a/2

.

Proof Plan jobs 1,2 such that their midtimes are m1 ≤M ≤m2. Now, job 1 is directly before

job 2, meeting at some time x = C1 = t2. By (1), we calculate the start time of job 1 by

solving equation C1(t1) = x for t1. For this, we use the symmetric behavior of p j depending
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on |m j −M|. This introduces t1(x) := M − (C1(M + (M − x))−M) = 2M −C1(2M − x).
Then, the makespan for both jobs is

p1 + p2 = C2(x)− t1(x)

= C2(x)−2M+C1(2M− x)

=
(

x+
l2 +a(x−M)

1−a/2

)

−2M+
(

2M− x+
l1 +a(2M− x−M)

1−a/2

)

=
(

x+
l2 +a(x−M)

1−a/2

)

−
(

x+
l1 −a(x−M)

1−a/2

)

=
l1 + l2

1−a/2
.

Thus, all positions satisfying m1 ≤ M ≤ m2 result in the same minimum makespan. ut

Property 9 Given a cfDTMP with an even number n = 2h of jobs J = {1, . . . ,n}, sorted

nondecreasingly by base length. Then, a schedule (S, t) has a minimum makespan Q(S, t)
if m1 ≤ M ≤ m2 or m1 ≥ M ≥ m2, and for the resulting sets Ā, B̄ there is |Ā| = |B̄| and

{Ā(i−1), B̄(i−1)}= {2i,2i−1} for i = 2, . . . ,h.

Proof For the given instance, by Property 2, any optimum schedule must place the shortest

jobs 1, 2 around M, with no other job in between. As of Property 8, the minimum makespan

of those two jobs is achieved if m1 ≤ M ≤ m2.

Let (S, t) be a schedule for the given instance with m1 ≤ M ≤ m2 or m1 ≥ M ≥ m2 and

no other job between job 1 and 2. By Property 8, we have p1 + p2 = l1+l2
1−a/2

. Consider the

resulting sets Ā, B̄. Here, J is partitioned into sets {1,2}, Ā, and B̄. With Property 1, we can

express the makespan for (S, t) as

Q(S, t) = Q0(Ā,x(p1 + p2))+Q0(B̄,(1− x)(p1 + p2)) (19)

= Q0(Ā,0)+Q0(B̄,0)+ x(p1 + p2) f (|Ā|)+(1− x)(p1 + p2) f (|B̄|) (20)

= Q0(Ā,0)+Q0(B̄,0)+
l1 + l2

1−a/2

(

x f (|Ā|)+(1− x) f (|B̄|)
)

. (21)

We are interested in optimum Ā, B̄, and x that achieve a minimum Q(S, t).
The optimum value of x depends on the cardinalities of Ā and B̄. We differ three cases:

(a) if |Ā|> |B̄| then x = 0, (b) if |Ā|< |B̄| then x = 1, and (c) if |Ā|= |B̄| then x ∈ [0,1]. As

|Ā|+ |B̄| = n− 2, the last term in (21) is minimum if |Ā| = |B̄|, hence we prefer case (c).

There, any x ∈ [0,1] is optimum.

To find an optimum partition of J \ {1,2} into sets Ā, B̄, we construct a new cfDTMP

instance with jobs J′ = {χ,3,4, . . . ,n}= {χ}∪ Ā∪ B̄ with a new job χ of base length lχ = 0.

Let (S′, t ′) be a minimum makespan schedule. This yields Ā′, B̄′. By Property 7, {Ā′(i−
1), B̄′(i−1)}= {2i,2i−1} for i = 2, . . . ,h and the makespan is

Q(S′, t ′) = Q0(Ā
′,0)+Q0(B̄

′,0). (22)

Sets Ā′, B̄′ are a valid partition of J \{1,2}, and therefore constitute feasible values for Ā, B̄.

By definition of (S′, t ′), they minimize (22). By letting Ā = Ā′, B̄ = B̄′, (22) is a part of (21).

Also, by Property 4, we have |Ā′|= |B̄′|, which is the prerequisite for the preferred case (c).

Therefore, (21) is minimum for Ā = Ā′, B̄ = B̄′, and x ∈ [0,1]. ut
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This generic property about optimum cfDTMP instances with even numbers of jobs

enables us to state a polynomial time exact cfDTMP algorithm.

Algorithm 1 Given a cfDTMP instance with n jobs. Sort the jobs nondecreasingly by base

length. Assume the resulting job list is 1, . . . ,n for even n, or 0,1, . . . ,n− 1 for odd n. Let

h := bn/2c. To construct an optimum job sequence S, we predetermine whether assigning a

job to A or B: For i = 1, . . . ,bn/2c, assign job 2i to A(i) and job 2i+1 to B(i). Accordingly,

set start time t = M−Q0({2i | i = 1, . . . ,bn/2c}, lχ/2) where lχ := 0 if n is even, or lχ := l0
if n is odd. Then, the sequence S is A(bn/2c), . . . ,A(1),B(1), . . . ,B(bn/2c) for even n, and

A(bn/2c), . . . ,A(1),χ,B(1), . . . ,B(bn/2c) with χ = 0 for odd n.

Such a schedule (S, t) satisfies either Property 7 if n is odd or Property 9 if n is even.

Therefore, (S, t) is optimum. In the algorithm, sorting is the most expensive step, taking

O(n logn) time. The remaining computations take O(n) time. Concluding, the stated algo-

rithm solves cfDTMP instances exactly and runs in polynomial O(n logn) time.

7 Algorithms for the DTMP

A common way to exactly solve new optimization problems is to use general purpose solvers

for, e.g., mixed integer programming (MIP). Hence, we present an exact MIP formulation

for the DTMP, which furthermore extends easily to the fDTMP (section 7.1). As it turns out,

in our experiments, it is not fast enough even for moderate numbers of jobs n. Therefore,

we present a dynamic programming algorithm (DP, see section 7.2), and simple heuristics

(section 7.3). Furthermore, we deduce lower bounds on the makespan (section 7.4), which

allow for a branch and bound algorithm (B&B, see section 7.5). For approximate solutions,

the branch and bound search is truncated (TrB&B, see section 7.6).

7.1 Mixed Integer Programming

We state the DTMP as a mixed integer program (MIP). Given parameters are t, a, l j, M j for

jobs j ∈ J. To encode the permutation of the n jobs J = {1, . . . ,n}, we assign every job to a

position P = {1, . . . ,n} in the sequence. The sequence S : J 7→ P then defines schedule (S, t).
We offer n positions, each of which holds one job. Here, binary variables x jk decide if job

j ∈ J is placed at position k ∈ P. For each position k ∈ P, we calculate a processing time p[k]
and a completion time C[k]. The objective to be minimized is C[n]− t.

min C[n]− t subject to:

t =C[0], (23)

C[k−1]+ p[k] =C[k] for all k ∈ P, (24)

∑
j∈J

l j x jk +a

∣

∣

∣

∣

∣

C[k−1]+
p[k]

2
− ∑

j∈J

M j x jk

∣

∣

∣

∣

∣

= p[k] for all k ∈ P, (25)

∑
j∈J

x jk = 1 for all k ∈ P, (26)

∑
k∈P

x jk = 1 for all j ∈ J, (27)

x jk ∈ {0,1} for all j ∈ J, k ∈ P. (28)
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Lines (23) and (24) recursively set C[k], k ∈ P. The processing time p[k] of the job at

position k ∈ P is expressed in line (25), closely following Definition 1. Note that the stated

absolute value function can be linearized using auxiliary variables. Lines (26), (27), and (28)

ensure that each job is assigned to exactly one position.

This MIP formulation contains no relaxations, hence it solves DTMP instances exactly.

Our method of positional assignment can be categorized under “assignment and positional

date variables” as in Keha et al. (2009).

Note that the formulation can easily be adopted for the fDTMP by changing parameter

start time t to a variable.

7.2 Dynamic Programming

Dynamic Programming is a well known principle to incorporate recursive substructures for

avoiding repeated computations. It is long since used in standard (fixed processing time)

scheduling, e.g., beginning with Held and Karp (1962). Interestingly, it is as well applica-

ble for our time dependent processing time problem. A necessary condition is the fact that

the function C j(t) (specified in Definition 1) is monotonically increasing, as visualized in

Figure 10. For this, first we show how the DTMP can be formulated as a recurrence relation.

Property 10 Given a DTMP with a job set J and a start time t. Now, C∗
max(J) =Cmax(S, t)

of a minimum schedule (S, t) is

C∗
max(J) =







t if J = /0,

min
j∈J

C j(C
∗
max(J \{ j})) else.

Proof In any optimum schedule of the jobs J, some job j ∈ J is the last job. Say it starts at

t ′. Because C j(t
′) is monotonically increasing, a smaller value for t ′ reduces the completion

time. The jobs in the set J \{ j} are to be scheduled before j. Thus, the shortest schedule for

this set, completing at t ′ =C∗
max(J \{ j}), also minimizes the completion time for j.

What remains is to find out which job j comes last. For this, we try any job j ∈ J and

take the one with smallest C j(C
∗
max(J \ { j}))). Concluding, there is no other smaller value

for C∗
max(J), and the equation is valid. ut

t j

C j(t j)

M j

t j + l j

Fig. 10 Irrespective of factor a ∈ (0,2), the completion time C j(t j) of a job j (see (1)) is a monotonically

increasing function of the job’s start time t j . The same monotonicity holds for a set of multiple jobs.

This recurrence relation can then be used in a dynamic programming algorithm, e.g.,

the one by Held and Karp (1962). This computes the value of the recurrence equation for all
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subsets of J. For n jobs, the number of subsets is 2n. As the number of operations is at most

n for each subset, this algorithm runs in O(n2n) time.

7.3 Simple Heuristics

To quickly obtain a good solution for a given DTMP instance, we devise several simple,

quickly implementable, but effective heuristics. Our heuristics in this section all begin with

an initial solution that is improved with a local search.

The first heuristic sorts the jobs nondecreasingly by their ideal midtime M j, and, as a

tie-breaker, nondecreasingly by their base length l j. Thereby, jobs should already lie close

to their ideal midtimes. However, by Property 2, jobs with the same M j value should form a

V-shape. In this initial solution instead, they are only positioned well in the case of all being

late. Therefore, this schedule is improved locally by a steepest ascent hill climbing search.

The neighborhood consists of all swappings of two jobs. The best swap candidate is applied

until we reach a local optimum. Together with the initial schedule, we call this the sorted

local search heuristic (SLS).

The second heuristic constructs a V-shaped arrangement of jobs with the same ideal

midtime M j. For this, the heuristic forms job groups of common M j values. The groups are

appended in nondecreasing order of their M j value. Each job group is arranged in a V-shape.

A V-shape consists of two parts, the front and the rear part. A random value u j ∈ {0,1}
for each job j ∈ J decides whether job j shall be placed in the front or the rear part. All

jobs belonging to the front part of a V-shape group are sorted nonincreasingly, while those

in the rear part are sorted nondecreasingly. In this order, both parts are appended to the

schedule. The resulting initial schedule then is improved by the same steepest ascent hill

climbing search as described above. As the heuristic has random variables, we repeatedly

run it nruns times, and select the best of all runs. We call this the V-shape sorted local search

heuristic (VLS).

The third heuristic starts with an arbitrarily permutated schedule. In contrast to the pre-

vious heuristics, this initial solution imposes an unbiased assignment of jobs to positions.

I.e., there is no sorting by M j values as before. This increases the diversity of the initial

schedule. Therefore, we begin with a number of nruns initial solutions. On each, a steepest

ascent hill climbing search is applied. At the end, the best resulting schedule is selected. We

call this the randomized local search heuristic (RLS).

7.4 Lower Bounds

Problem specific lower bounds are a necessity for developing an effective branch and bound

algorithm. In this section, we describe several lower bounds for the DTMP, and summa-

rize them into a single lower bound. For this, we make use of Property 2, that concerns

with the optimality of V-shapes. Furthermore, we use the polynomial time algorithm for the

cfDTMP (Algorithm 1) to derive a lower bound for a subset of jobs with a common ideal

time. Note that, by NP hardness of the fDTMP (Theorem 3), a similar lower bound would be

hard to compute for jobs of distinct ideal times. However, in certain cases, it is still possible

to express bounds for job sets with distinct ideal times (see sections 7.4.6 and 7.4.7).



Scheduling with time dependent discrepancy times 23

7.4.1 A Trivial Lower Bound (LB0)

Given a set of jobs J and a start time t. By definition, p j ≥ l j, j ∈ J. Therefore, a trivial lower

bound for the makespan Q(S, t) = Cmax(S, t)− t is LB0(J) := ∑i∈J li, This bound is tight if

and only if there exists a schedule where m j = M j for all j ∈ J.

7.4.2 Jobs with a Common Ideal Midtime Before Start Time (LB1a)

If we have a subset of jobs with a common ideal midtime M ∈R, we may improve LB0. For

this, we look at our given set of n jobs J where the ideal midtimes may differ. For a given

start time t and some M, define subset Bt,M := { j ∈ J | M j = M∧ M j − l j/2 ≤ t}. Then, Bt,M

contains those jobs that have M in common and, given the start time, must be scheduled

after their ideal midtime, i.e. m j ≥ M j for j ∈ Bt,M . Without loss of generality, assume

Bt,M = {1, . . . ,k}, sorted by nondecreasing base length. Hence J \Bt,M = {k+1, . . . ,n}. Let

SBt,M (i) = i for i = {1, . . . ,k}. Then, define LB1a(J, t,M) := Q(SBt,M , t−M)+LB0(J \Bt,M).
By Property 1,

LB1a(J, t,M) = (t −M)( f (k)−1)+
k

∑
i=1

li g(k− i)+
n

∑
i=k+1

li.

This represents the set of jobs scheduled after t. As required by Property 2, it is sorted

nondecreasingly by base length. If no other jobs interfere, i.e. Bt,M = J, this bound is tight.

On the other hand, if Bt,M = /0, it degenerates to LB1a(J, t,M) = LB0(J).
Because Bt,M ∩Bt,M′ = /0 for M,M′ ∈ R, M 6= M′, we can apply this lower bound sep-

arately to other ideal midtimes, and then combine their values. For this, we partition J into

subsets of jobs with a common ideal midtime. This results in

LB1a(J, t) := ∑
M∈{M j | j∈J}

LB1a({ j ∈ J | M j = M}, t,M).

Note that LB1a(J, t)≥ LB0(J). Also, LB1a(J, t) = LB0(J) if and only if there is no job j ∈
J with M j − l j/2 < t.

7.4.3 Jobs with a Common Ideal Midtime After Upper Bound (LB2a)

We can apply LB1a symmetrically to jobs at the end of the schedule. Given a job set J

and an ideal midtime M. Denote the upper bound value UB of Cmax(S, t) by C. Define job

set AC,M = { j ∈ J | M j = M ∧ M j + l j/2 ≥ C}. As C is an upper bound on Cmax(S, t), any

job j ∈ AC,M must be scheduled both before C and its ideal midtime, i.e. m j ≤ M. Therefore,

we can apply LB1a symmetrically and define

LB2a(J,C,M) := LB1a(AC,M, M+(M−C))+LB0(J \AC,M).

This bound is tight if, given a start time t, we have C− t = LB2a(J,C,M) and AC,M = J. On

the other hand, if AC,M = /0, then LB2a(J,C,M) = LB0(J).
To apply this bound for all ideal midtimes, define

LB2a(J,C) := ∑
M∈{M j | j∈J}

LB2a({ j ∈ J | M j = M},C,M).

Note that LB2a(J,C) ≥ LB0(J). Also, LB2a(J, t) = LB0(J) if and only if there is no

job j ∈ J with M j + l j/2 >C.
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7.4.4 Jobs with Different Ideal Midtimes Before Start Time (LB1b)

Given a start time t, and a set of n jobs J. Define set Bt = { j ∈ J | M j − l j/2 ≤ t}. Note that

Bt =
⋃

M∈R Bt,M . At t, the processing time of any job j ∈ Bt has increased to l j +a(t −M j),
respectively. Hence, we let l′j := l j + a |t −M j| and M′

j = t for all j ∈ Bt . We denote this

transformed job set by τ(Bt , t). Now, t is the virtual common ideal midtime for the jobs in

τ(Bt , t). Therefore, we can apply LB1a. This defines

LB1b(J, t) := LB1a(τ(Bt , t), t)+LB0(J \Bt).

This bound is tight if Bt = J. Also note that LB1b(J, t)≥ LB1a(J, t).

7.4.5 Applying LB1 to Jobs After Upper Bound (LB2b)

We can similarly define LB2b. Given an upper bound value C and a job set J. Define set

AC = { j ∈ J | M j + l j/2 ≥C}. The transformed set again is τ(AC,C). Now, we can define

LB2b(J,C) := LB2a(τ(AC,C),C)+LB0(J \AC).

Note LB2b(J,C) ≥ LB2a(J,C). This bound is tight again if, given a start time t, we have

C− t = LB2b(J,C).

7.4.6 Enhancing LB1b (LB1c)

Given a start time t and a job set J = {1, . . . ,n} sorted by nondecreasing (l j −aM j). Remem-

ber from LB1b that we applied the transformation τ only to the jobs in set Bt . Those jobs,

when started at t, complete earliest at some t ′ > t. Reusing t ′ as a new start time, a different

set of jobs Bt ′ emerges. The larger t ′ is, the more jobs are in set Bt ′ , hence Bt ′ ⊇ Bt holds.

Observe that we now are allowed to append jobs { j ∈ τ(Bt ′ , t
′) | j > max{i | i ∈ τ(Bt , t

′)}},

i.e. those jobs of Bt ′ that at t ′ have a higher base length than all previously appended jobs Bt .

This consideration can be formalized as follows. Define

r(J, t, j) :=











0 if j /∈ J,

(C j(t)− t)+ r(J,C j(t), j+1) if M j − l j/2 ≤ t,

l j + r(J, t, j+1) else.

Then, LB1c(J, t) := r(J, t,1). Note LB1c(J, t)≥ LB1b. Furthermore, this bound is tight if the

third case in r never triggers.

7.4.7 Enhancing LB2b (LB2c)

This symmetrically applies to the end of our schedule. Given an upper bound value C and

a job set J = {1, . . . ,n} sorted by nondecreasing (l j + aM j). First, define t j(C) := M j −
(C j(M j +(M j −C))−M j) = 2M j −C j(2M j −C), which corresponds to the start time of a

job j ∈ J that completes at C. Define

s(J,C, j) :=











0 if j /∈ J,

(C− t j(C))+ r(J, t j(C), j+1) if M j + l j/2 ≥ t,

l j + r(J,C, j+1) else.

Then, LB2c(J,C) := s(J,C,1). Note LB2c(J, t)≥ LB2b. If the third case in s never triggers

and if, given a start time t, we have C− t = LB2c(J,C), then the bound is tight.



Scheduling with time dependent discrepancy times 25

M1

1 23

M2

1 23 45 6

Fig. 11 LB3 groups jobs of same ideal midtime into locally optimum V-shapes.

7.4.8 Lower Bound on Common Ideal Midtime Job Sets (LB3)

Consider a subset of jobs JM ⊆ J with a common ideal midtime M ∈ R: JM := { j ∈ J |
M j = M}. Obviously, not every job j ∈ JM can be scheduled such that m j = M. But we can

efficiently compute the minimum cDTMP makespan of this set, denoted by q. To obtain q,

we run the O(n logn) time Algorithm 1 for the cDTMP (see section 6). Then, q delivers a

lower bound for JM , denoted by LB3(JM,M) := q.

For problems with different ideal midtimes, the job set J is partitioned into subsets of

common ideal midtime to compute individual lower bounds:

LB3(J) = ∑
M∈{M j | j∈J}

LB3(JM,M).

This is also depicted in Figure 11.

7.4.9 Joint Lower Bound

Given a DTMP instance with a job set J, a start time t, and an upper bound value C =UB.

We may summarize the presented bounds into a single lower bound.

First, we assemble job subsets JA,JB ⊆ J for which LB1c and LB2c hit. For this, find

the maximum cardinality subset JA ⊆ J where for all jobs j ∈ JA, there is LB1c(JA, t) >
LB1c(JA \ { j}, t)+ l j. Similarly, find the maximum cardinality subset JB ⊆ J where for all

jobs j ∈ JB, there is LB2c(JB, t) > LB2c(JB \{ j}, t)+ l j. Obviously, finding a largest subset

is easy. It is equal to excluding jobs j ∈ J that hit the third case in r and s when calculating

LB1c(J, t) and LB2c(J, t), respectively.

Let JC = J \ (JA ∪ JB). Then, define the lower bound for the makespan Q(S, t) as

LB(J, t) := LB1c(JA, t)+LB2c(JB, t)+ ∑
M∈{M j | j∈JC}

LB3({ j ∈ JC | M j = M}).

7.5 Branch and Bound Algorithm

In this section, we present a branch and bound algorithm B&B for solving the DTMP ex-

actly. This uses the lower bound from section 7.4. To initialize the upper bound, it runs

heuristics from section 7.3. To further speed up the search, two dominance rules are intro-

duced in section 7.5.1. In section 7.5.2, our branching strategy is explained.

We base the B&B on a recursive depth first search, and plan jobs forwardly. A branch

node is a pair (JO, t
′), consisting of a set of open jobs JO and a partial completion time t ′.

We begin with the branch node (J,0) (assuming start time t = 0). From each branch node,

we recurse to any job j ∈ JO, thereby removing j from JO and increasing t ′ by p j.

As the currently best schedule, we use the best solution of both the LS and the RLS

(see section 7.3). This initializes the makespan upper bound UB. To estimate the quality
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k j

j k

Fig. 12 Eliminate a branch if swapping any previous job k with the last job j lowers the partial completion

time.

of a branch node, we use the lower bound described in section 7.4. In this way, a branch

node (JO, t
′) can be eliminated if t ′+LB(JO, t

′)≥UB. When reaching ( /0, t ′) for some t ′, we

have a new best schedule, and UB can be lowered to t ′. After having recursed to all j ∈ JO in

all branch nodes, the best schedule represents an optimum solution for the problem instance.

7.5.1 Dominance Rules

In the following, we present two dominance rules for the DTMP, namely DR1 and DR2.

When a dominance rule observes that a branch certainly leads to no improved solution, we

eliminate the branch.

The dominance rule DR1 checks if in the current branch node (JO, t
′), a shorter makespan

has previously been found for the subset of completed jobs JC := J \JO. By Property 10, the

shorter partial solution is dominant. When reaching a certain JC set for the first time, we

store the upper bound of t ′ for this subset, t ′UB(JC) := t ′, and continue. When we branch

to the same JC set again with another job sequence, we compare this sequence’s t ′ with

t ′UB(JC). If t ′ ≥ t ′UB(JC), we eliminate the branch. Else, we update t ′UB(JC). The number of

JC sets is up to 2n. Thus, the memory requirements for this dominance rule can be very high.

Therefore, it is useful to only store a limited number of t ′UB values. In doing so, the number

of stored values may grow to that limit. Then, some values need to be discarded, e.g., the

least recently used values.

The dominance rule DR2 checks if the current partial solution can be improved by per-

forming a quick neighborhood search. In our upper bound heuristic, we use a job swapping

neighborhood. Here, we use a similar neighborhood which can be described as follows. In

the current branch node, the job set JC completes at t ′. During branching, we recursively

append jobs. Hence, we only look at the neighborhood which includes a change of the po-

sition of the last job j in the partial sequence. We allow swapping job j with a preceding

job k, where additionally S(k) ≥ max{1, n− S( j)} to reduce the number of checks later in

the search tree. If for some k, the swap results in a partial completion time t ′′ with t ′′ < t ′,

we eliminate the branch. This is exemplified by Figure 12.

7.5.2 Branching Strategy

In order to fathom many branches quickly, we try to obtain good upper bounds for job

subsets, namely the t ′UB(JC) values (see section 7.5.1), as early as possible. For this, the

order of visiting subbranches is relevant. In this section, we explain the branching strategy

which we develop for our B&B.

We remember that good solutions often exhibit V-shaped job orders. Hence, we prefer

branches that actively establish V-shapes.

Given a branch node (JO, t
′). Consider jobs which are already after their ideal midtime:

the set Bt ′ = { j ∈ JO | M j − l j/2 ≤ t ′}. Secondly consider those jobs which are before or at

their ideal midtime: the remaining set JO \Bt ′ , denoted by At ′ .
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Remember that if Bt ′ = JO, the optimum arrangement of set Bt ′ sorts jobs nondecreas-

ingly by l j − aM j. In the case of Bt ( JO, we can sort the rest of the jobs inversely; that

means nondecreasingly by l j +a(M j − t ′) =C j(t
′).

This leads to the following branching strategy:

1. Branch to jobs j ∈ Bt ′ , ordered nondecreasingly by the value of C j(t
′),

2. Branch to jobs j ∈ At ′ , ordered nonincreasingly by the value of C j(t
′).

It is costly to sort the sets At ′ ,Bt ′ in each recursion step. But it is possible to precompute

both sets and their respective order for all distinct values of t ′ in polynomial time. This uses

the fact that the sets and their order remain equal for all t ′ ∈ (M,M′] in an interval between

consecutive ideal midtimes M and M′.

When computing LB(JO, t
′) (see section 7.4.9), it may occur that its JB set equals JO,

and furthermore LB2c(JB, t
′) is tight. Then, we already know the optimum sequence of JO.

In this case, it is always obtained by following the first subbranch.

Concluding, we first identify the interval q which contains t ′. This yields the precom-

puted partition of J into Aq,Bq. Then, we branch to jobs in order of the sorted set Bq ∩ JO,

then Aq∩JO. Only if JB = JO and LB2c(JB)(JB, t
′) is tight, omit all except the first subbranch.

7.6 Truncated Branch and Bound Heuristic

The B&B (section 7.5) delivers exact solutions for the DTMP. We further apply its principles

to construct an efficient, dedicated heuristic. For this, the search tree is truncated. This is the

foundation of our truncated branch and bound heuristic TrB&B.

In the B&B, in each branch node, children branch nodes are discarded through bounding

or dominance rules. The TrB&B discards even more children branch nodes. Particularly,

only the nexpl children branch nodes (JO, t
′) with the lowest LB(JO, t

′) values are explored;

the others are discarded. We choose the value for nexpl depending on the level in the search

tree. We explore more options at the beginning than at the end of the search. To achieve this,

we factor in the number of open (i.e. not completed) jobs, |JO|, as defined in Sec. 7.5. Note

that |JO| is large at the beginning of the search, and small at the end. To explore more than

ψ children at all times, we set nexpl := max{ψ, b|JO|/σc}, for some integer ψ, σ > 0.

8 Numerical Results

8.1 Instance Generation

We generate a test set for the DTMP that allows for algorithm performance comparisons.

It covers a variety of different problem settings to check for strengths and weaknesses of

algorithms.

Generally, we set start time t = 0. The instances have a size of n = 20,24, . . . ,60 jobs.

We used four variants b = 1, . . . ,4 of generating a job’s base length:

Case b = 1: base lengths l1, . . . , ln = 1, all equal.

Case b = 2: base lengths l1 = 1, l2 = 2, . . . , ln = n, all distinct.

Case b = 3: lengths are drawn uniformly from {1,2, . . . ,10}.

Case b = 4: lengths are drawn from the geometric random variable X = d−λ lnUe where

U is uniformly distributed in [0,1], and λ = 2.
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The jobs are randomly assigned to ideal midtimes. For this, we define |M| = n/4 uni-

formly distributed [0,1] random values as preparatory ideal midtimes. Then, each job is

randomly assigned to one of these values. We now have 11 ·4 = 44 configurations, for each

we generate 30 samples. Each sample yields 5 instances by varying a as follows.

For an instance, we further need the growth factor a and the ideal midtimes. For this,

we vary a ∈ {0.05,0.1,0.2,0.4,0.6}. According to a, we finally obtain the ideal midtimes

by scaling the preparatory ideal midtimes to interval [Mmin,Mmax] being defined below.

Thereby, we allow for direct performance comparisons on different values of a. The in-

terval is calculated as follows. For an instance with jobs J of common ideal midtime M =
t = 0, the makespan lower bound LB1a(J,0) (see section 7.4.2) is tight. Here, LB1a(J,0) =

∑
n
i=1 li g(n− i) for the job set J = {1, . . . ,n}, sorted nondecreasingly by base length. Hence,

the optimum C∗
max = LB1a(J,0) of this instance can be calculated in polynomial time. We

note that an arbitrary instance with some M < 0 is equivalent to an instance with M′ = 0,

where each job’s base length is increased by −aM. To avoid such duplicate instances in

the test set, we set Mmin = 0. A very large value of M exhibits the same behavior sym-

metrically. There, the optimum sequence sets the jobs nonincreasingly by base length. In

fact, this job sequence is optimum for all instances with M ≥ ∑
n
i=1 li g(n− i). Thus, we let

Mmax = ∑
n
i=1 li g(n− i).

For each of the 44 ·30 samples, we have 5 values of a, yielding 6600 test instances.

8.2 Experimental Setup

For the given testbed, we obtain optimum schedules using three algorithms: MIP (sec-

tion 7.1), DP (described in section 7.2), and B&B (section 7.5). For comparison, we evaluate

the heuristics LS, RLS (both in section 7.3), and TrB&B (section 7.6).

We implemented our algorithms in C++, compiled with GCC 4.8.1. For the MIP formu-

lation, we used the Gurobi 5.6.1 solver. To ensure precise and repeatable measurements, we

ran the experiments on a headless dedicated machine, equipped with an Intel Core 2 Q9550

CPU, 4 GB RAM, operating a 64 bit Ubuntu Server Linux 13.10 and Kernel 3.11.0. Each

instance was executed separately, allowing a maximum runtime of 480 seconds. To allow

for a pure runtime measurement, we refrain from parallel computations.

As parameters for the VLS and the RLS we use nruns = n/4. For the TrB&B, we use

ψ = 7 and σ ∈ {3,6}. In the B&B we initialize the upper bound with the minimum value of

SLS and RLS (nruns = n/4).

8.3 Results and Discussion

To compare our solution methods for the DTMP, we first look upon the results for the MIP

and the DP. Then we analyze the results for the other algorithms more in-depth.

The MIP solver completes the computations within a median of 31.36 seconds for the

smallest instances of size n = 20. For n = 24, more than half of all instances already run

over the time limit of 480 seconds. The same happens for n = 28, therefore we omit a test

of the MIP for instance sizes larger than n = 28.

The results for the DP are more promising, at least for small instances. The median

runtimes are 0.13 seconds for n = 20, 2.73 for n = 24, and 54.60 for n = 28. The DP runtime

for a given instance size is quite consistent and predictable. This is supported by the fact that

the coefficient of variation (ratio of the standard deviation to the mean) of the runtime is quite
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n B&B SLS VLS RLS TrB&B TrB&B

for σ = 6 for σ = 3

20 100.00% 78.17% 89.17% 92.83% 97.67% 97.00%

24 100.00% 71.67% 82.17% 86.17% 94.67% 94.33%

28 100.00% 64.83% 74.50% 80.17% 92.83% 91.83%

32 100.00% 59.50% 68.17% 74.00% 86.33% 86.83%

36 99.83% 49.08% 58.93% 65.28% 81.47% 81.97%

40 98.17% 43.29% 51.78% 55.86% 75.55% 79.12%

44 93.00% 38.35% 46.95% 52.51% 73.66% 76.52%

48 82.50% 37.37% 45.45% 52.73% 73.94% 81.62%

52 79.00% 34.18% 43.25% 44.73% 70.89% 80.38%

56 66.00% 31.57% 37.37% 37.63% 69.70% 83.33%

60 54.33% 30.98% 35.28% 38.65% 76.07% 84.66%

all 88.44% 51.07% 59.91% 64.42% 82.22% 85.57%

Table 1 This table presents the fraction of instances solved to optimality by the exact B&B algorithm. For

each heuristic, this table presents the fraction of optimally solved instances (of those where the optimum is

known). Each row displays the results for the subset of instances with a specific number of jobs n. The bottom

row shows the results of all instances together.

n B&B SLS VLS RLS TrB&B TrB&B

for σ = 6 for σ = 3

20 0.00 0.00 0.00 0.00 0.00 0.00

24 0.01 0.00 0.00 0.01 0.00 0.00

28 0.02 0.00 0.01 0.03 0.01 0.01

32 0.06 0.00 0.03 0.06 0.03 0.04

36 0.26 0.00 0.06 0.12 0.07 0.16

40 1.00 0.00 0.10 0.20 0.12 0.49

44 2.56 0.01 0.16 0.36 0.40 1.49

48 10.54 0.02 0.24 0.57 0.78 5.15

52 22.91 0.02 0.35 0.98 2.26 13.91

56 91.56 0.04 0.56 1.52 4.68 42.44

60 239.94 0.05 0.83 2.26 6.08 135.72

all 0.36 0.00 0.07 0.20 0.09 0.22

Table 2 This table displays algorithm performance by number of jobs n. The bottom row shows the results of

all instances together. Displayed for each algorithm is the median runtime in seconds (including the runtime

of those over the time limit).

low: 0.080 for n = 20, 0.084 for n = 24, and 0.087 for n = 28. The reason for this consistent

runtime for same values of n is that any such instance runs through the same number of

iterations. All of the instances with n = 32, however, run over the time limit, therefore we

omit to test the DP with instances larger than that. It is visible that neither the MIP, nor

the DP are able to solve larger instances. A reason is that none of them utilizes underlying,

specific properties of the DTMP.

The B&B algorithm (see section 7.5) is able to solve larger instance sizes. For the fol-

lowing results, we refer to Table 1. The B&B obtains exact solutions for 88.44% of all

instances. For n ≤ 32, all instances are solved to optimality within the time limit. Hence it is

able to supersede the other exact algorithms completely. Even for larger numbers of jobs n

up to n = 60, it is able to solve most instances. Table 2 shows the median runtime of the

B&B. The exponential growth of the runtime in relation to n is clearly visible. The number
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n SLS VLS RLS TrB&B TrB&B

for σ = 6 for σ = 3

20 0.07% 0.04% 0.04% 0.01% 0.01%

24 0.12% 0.07% 0.10% 0.01% 0.02%

28 0.14% 0.10% 0.12% 0.03% 0.03%

32 0.17% 0.13% 0.12% 0.05% 0.05%

36 0.21% 0.19% 0.17% 0.07% 0.05%

40 0.25% 0.21% 0.23% 0.08% 0.06%

44 0.29% 0.23% 0.28% 0.10% 0.09%

48 0.26% 0.23% 0.48% 0.12% 0.08%

52 0.27% 0.24% 1.15% 0.11% 0.08%

56 0.28% 0.25% 1.48% 0.09% 0.04%

60 0.28% 0.26% 2.91% 0.06% 0.04%

all 0.20% 0.17% 0.50% 0.06% 0.05%

Table 3 For each heuristic displayed is the mean absolute percentage deviation of the optimum value (if the

optimum is known), by number of jobs n. The bottom row shows the results of all instances together.

of solved instances decreases exponentially as well. This is a behavior we expect from a NP

hard problem setting.

The heuristics we compare are the SLS, the VLS, and the RLS from section 7.3, as well

as the TrB&B from section 7.6. The SLS is fastest by a large margin. Its runtime is, in most

cases, even too small to measure (with a 10 millisecond precision). Its maximum runtime

over all instances is 0.09 seconds. Yet, the result of the SLS was optimum in 56.73% of

all instances that the B&B solved to optimality within the time limit. The mean absolute

percentage deviation (MAPD) to the optimum value is 0.20% (see Table 3). The runtime

of the VLS is higher. With the increased runtime, more instances were solved to optimum

(59.91%), with a similar MAPD value (0.17%). The runtime of the RLS is even higher.

Also, it found the optimum in more cases (64.42%). However, at 0.50%, its MAPD is much

higher than that of the SLS and the VLS. A cause of this effect is the randomness involved in

the last algorithm. In the initial schedule, the jobs are completely arbitrarily sorted. This is

useful, as more randomness in the initial schedule hits the optimum more often than with a

biased sorting. But for solutions where the jobs are mostly sorted in order of their midtime,

the deviation from the optimum is much higher. There, a less random initial schedule, as

with the VLS, is more useful. This rationale is underlined by the fact that the MAPD of the

RLS increases for the largest values of n.

The TrB&B heuristic shows low runtimes in the case of σ = 6. The number of optimally

solved instances is much higher than that of the previous heuristics, as it is visible in Table 1.

Still, its MAPD at 0.06% is much less. Moreover, even its runtime for n ≤ 48 is comparable

to the runtime of the VLS and the RLS. For n > 48, it remains within a factor of 3 of

the RLS. But here, the number of solved instances remains way above about 70%, while

the RLS decreases to about 40%. The TrB&B heuristic is very scalable. Depending on the

parameterization, it is able to solve instances either quickly, or with a high quality. For the

smaller σ = 3, its runtime is roughly half that of the B&B. The quality then is a bit higher

than with σ = 6: the number of solved instances grows from 82.22% to 85.57%. In all

heuristics, the number of optimally solved instances decreases for larger n. One may note

that for the TrB&B, this value is increasing with n = 60. The source of this increase likely

is caused by the correlation between the TrB&B and the B&B performance for the same

instances, as well as the decrease of quality in the initial upper bound.
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Fig. 13 Logarithmic median B&B runtime in seconds for number of jobs n and base length case b.

a 0.05 0.1 0.2 0.4 0.6

solved by B&B 82.05% 81.29% 87.05% 92.73% 99.09%

Table 4 The ratio of instances which the B&B solved to optimality within the time limit for each processing

time growth factor a.

The test set allows to analyze the behavior of our algorithms in different scenarios of

base lengths. The case b = 1 with jobs of equal base length is easiest to solve: For n = 60,

B&B found optimum solutions for all of those instances, in a median runtime of 0.01 sec-

onds. In this base length case, the result of the SLS always equals to that of the VLS because

their initial solutions are alike. But these two achieve the optimum only in 58.79% of the

instances. This result shows that solving these instances, other than one may intuitively ex-

pect, indeed involves more than simply sorting the jobs by their ideal midtime. The RLS

performed better here (67.33%). For the TrB&B, this case means no difficulty (98.30% for

σ = 6, and 100.00% for σ = 3). A comparison to the other base length cases is shown in

Figure 13. Case b = 2 took the most time to solve, the base length variance is highest here.

The B&B found the optimum in 78.67%. Case b = 3 is less hard (B&B found the optimum

in 84.06%). A reason might be the following: As the lengths are not forced to be distinct,

jobs more often share the same base length. In case b = 4, more small base lengths are

drawn, hence, this case is even easier (91.03%).

The factor a specifies the growth of the processing time. The test set contains instances

for several values of a. The results in Table 4 show that small values of a are more diffi-

cult to solve. With less processing time growth, the differences between different schedules

are smaller. As the bounds in the B&B mostly measure processing time differences, they

become hard to apply for small a. We assume that this is the reason that small values of a

imply a higher difficulty to the B&B.

Concluding, we observe that the MIP is not a viable option for solving instances even

with only n = 20 jobs. The B&B is able to solve instances of large numbers of jobs. Even

for n = 60, most instances were solved exactly within the time limit of 480 seconds. If
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heuristic solutions are acceptable, the quickest algorithm is the SLS. Its runtimes are small,

and still, it solves most of all instances to optimality and, if not, with a small deviation.

Both randomized variants of the SLS, the VLS and the RLS, take more time but yield better

results. Although the deviation from the optimum is in general slightly higher, the RLS

hits the optimum solution more often than the VLS. The TrB&B achieves the best heuristic

solutions, within a low runtime.

Note that we also implemented other metaheuristics. However, a tabu search procedure

and a genetic algorithm delivered results that were not as promising.

9 Conclusion

To our knowledge, the introduced DTMP is the first time dependent single machine problem

which uses a nonmonotonic piecewise linear processing time function.

The analysis of several properties of the DTMP enables us to reduce the NP hard Even

Odd Partition Problem (Garey et al., 1988) to the DTMP, the cDTMP, and the fDTMP. For

the cfDTMP, we introduce a polynomial time algorithm. For the DTMP and the fDTMP, we

present a positional assignment MIP formulation. To find exact solutions for larger instances

of the DTMP, we develop several heuristics and two exact algorithms: a DP, and a B&B.

The latter is modified as a sophisticated heuristic, the TrB&B. Simple heuristics, based on

greedily initialized schedules, improved by a steepest ascent neighborhood search, provide

an initial upper bound. A lower bound is constructed by exploiting several presented DTMP

properties. Furthermore, the C j(t j) function is monotonically increasing, it thus allows for

two dominance rules that compare partial solutions in order to select the dominant one.

Future research could also consider extending the DTMP model. In this work, we con-

sider the variant of a flexible start time to minimize the makespan, and the subproblems

where all jobs have a common ideal midtime M. In a further study, one might consider to

change growth factor a depending on the sign of m j −M j. This may model a worker who

is walking beside the conveyor, not atop. Moreover, one could provide an individual a j for

each job j, which represents, e.g., variable walk speeds caused by materials of different size

and mass. Instead of using the discrepancy of a job’s midtime to the ideal midime, one could

also measure the discrepancy of a job’s start or completion time to a reference time. Even

more general is the discrepancy of some arbitrary point in between. Each models a different

point in time the worker walks. Especially the use of a job’s start time as reference would

be more in line with existing time dependent scheduling research. Accordingly, it is inter-

esting to obtain knowledge about relations between these problem variants, e.g., in terms of

complexity and solution methods. By this, we would gain further theoretical understanding

of scheduling with convex piecewise linear processing times, and a variety of its practical

applications.

Relocating the shelves at assembly lines is another way of minimizing worker paths.

This can be modeled by ideal midtime assignment. The effectiveness of worker scheduling to

minimize walk times is limited by the shelf positions. By allowing to change shelf positions,

thus controlling ideal midtimes, we could minimize worker paths even more.
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