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Abstract
Placing material containers at moving assembly lines is an intriguing problem because
each container position influences worker paths. This optimization is relevant in practice
as worker walking time accounts for about 10–15% of total work time. Nonetheless, we
find few computational approaches in the literature. We address this gap and model
walking time to containers; then optimize their placement. Our findings suggest this
reduces walking time of intuitive solutions by an average of 20%, with considerable
estimated savings. To investigate the subject, we formulate a quintessential optimiza-
tion model for basic sequential container placement along the line side. However, even
this core problem turns out as strongly NP-complete. Nonetheless, it possesses several
polynomial cases that allow to construct a lower bound on the walking time. Moreover,
we discover exact and heuristic dominance conditions between partial placements. This
facilitates an exact and a truncated branch and bound solution algorithm. In extensive
tests, they consistently deliver superior performance compared to several mixed integer
programming and metaheuristic approaches. To aid practitioners in quickly recognizing
instances with high optimization potential even before performing a full optimization,
we provide a criterion to estimate it with just few measurements.
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1. Introduction

A key component for improving the productivity of manufacturing plants is the elimina-
tion of nonproductive time. In automotive final assembly, worker walking times are a
significant contributive factor: Scholl et al. (2013) indicate that about 10–15% of total
production time at a major German car manufacturer is spent on fetching parts from the
line side. We aim to minimize this nonproductive work time by optimizing the line side
placement of parts. The main difficulty arises from a moving conveyor which induces
time-dependency for walk distances to the line side.

In this work, we approach this with a model that captures the quintessence of planning
the line side part placement such that it takes time-dependent walking time into account.
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Figure 1. This figure shows an example assembly station for the right rear wheel. The conveyor line
is shown at four points in time; each is at the start of an assembly operation (marked with a dashed
line). Before each operation, the worker walks to pick up required parts from the corresponding box
at the line side. An intuitive placement strategy is to order the boxes in job sequence 〈1, 2, 3, 4〉, as
shown in (a). However, the resulting walking time is over 40% higher compared to the optimum
placement in (b) with box sequence 〈1, 3, 4, 2〉. Clearly, it is better to accept a longer distance for
operation 2; it results in much shorter distances for 3 and 4.

We are given n part boxes, each with a certain width. They are placed side-to-side in a
single row along the assembly line. Each box contains all the parts required for exactly
one assembly operation. Hence, we are also given a list of n assembly operations, each
with a specific assembly time. The operations are processed by one assembly worker in
a fixed sequence. For each assembly operation, he or she leaves the workpiece, walks
along the assembly line to the corresponding box, picks up the required parts, and
returns to the workpiece. We call this a walk. Then, the worker performs the assembly
operation. The workpiece is situated on a conveyor that moves with constant velocity
along a line. Thus, walk distances are time-dependent, but deterministic. To minimize
walking time (the sum of all walk times), each box should be placed close to the point
where its operation is performed. Intuitively, it should suffice to order the boxes in the
same sequence as the jobs. Although this is a common practice, it can be better to place
certain boxes further away which yields a longer walking time locally, but reduces it
globally, like for instance in Figure 1.

For devising a method that optimizes the box sequence, one may turn to existing
scheduling literature. However, we are not aware of any existing model that matches
the given setting, Therefore, let us at least identify related scheduling problems and
their discrepancy to our setting in the following. To minimize the walking time, each
box ought to be placed close to the location of its assembly operation. This resembles
the classic scheduling objective of completing each job close to its due date, while any
deviation increases costs linearly. The corresponding minimization problem is known
as the early/tardy scheduling problem (Baker and Scudder, 1990; Józefowska, 2007).
It is NP-hard already in its simplest form with cost slopes all equal and one common
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due date (Hall et al., 1991). With distinct due dates, it becomes NP-hard in the strong
sense (Wan and Yuan, 2013). However, there is a clear shortcoming of this model
because, in our given application, it is infeasible to assume constant due dates: As each
walk influences the position of succeeding operations, the due dates need to change
accordingly. Hence, due dates are impacted by the job sequence. There is literature on
variable due dates, also in combination with the early/tardy objective (Cheng and Gupta,
1989; Gordon et al., 2002a,b, 2004; Kaminsky and Hochbaum, 2004; Shabtay, 2016).
Nonetheless, the closest relation we see is the quotation of due dates in dependence of
job processing times. In our case however, each due date should depend both on the
actual start time of the job, and the preceding due date (to leave enough space for
placing the box), and we are not aware of any literature taking this into account.

A second perspective on the placement problem is to regard assembly operations
as jobs with processing times that depend on start time (Alidaee and Womer, 1999;
Cheng et al., 2004a; Gawiejnowicz, 2008). In particular, there are studies on processing
time functions that depend on the absolute difference between start time and due
date (Farahani and Hosseini, 2013; Jaehn and Sedding, 2016). However, their due date
value is fixed. This is relieved with variable due dates (Cheng et al., 2004b; Gordon
et al., 2012; Yin et al., 2013). But in this stream of work, processing time functions are
independent of due dates. Furthermore, it is not ensured that there is enough space
after each due date for placing the corresponding box. Moreover, these models allow
to permute the jobs as well, although their sequence is fixed in our case. Hence, this
literature is of limited use for the problem at hand. Nonetheless, we find use of their
mindset in modeling and solving it.

On the applied side, literature on assembly line optimization provides a rich body of
work leading up to line side placement optimization. To begin with, most notable is the
assembly line balancing problem as it belongs to one of the first described mathematical
optimization problems (Salveson, 1955). Its objective is to distribute work equally
among workers. As each worker’s available time is limited, it generalizes the bin-packing
problem (Wee and Magazine, 1982). Surveys on this topic are found in Battaïa and
Dolgui (2013); Baybars (1986); Scholl and Becker (2006). In practice, a multitude
of additional aspects need to be considered. Assembly of a workpiece often requires
parts from containers at the line side. However, available space is scarce. Therefore,
Bautista and Pereira (2007) introduce space constraints for each workstation, while
space utilization is optimized in Bukchin and Meller (2005) to reduce line stoppage
from late part replenishments. As stops also happen if an assembly worker’s workload
repeatedly exceeds the available time, it is essential to anticipate and plan each worker’s
workload properly. To this end, the models in Andrés et al. (2008) and Scholl et al.
(2013) factor in sequence-dependent work times for, e.g., fetching parts. However, these
models assume fixed walking distances. These are inaccurate for moving assembly lines,
which transport a workpiece continuously on a conveyor. The resulting time-dependency
of walk distance is modeled in Jaehn and Sedding (2016). They minimize each worker’s
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total walking time by sequencing assembly operations according to a given line side part
placement. However, an optimization of the latter allows to attain a significant reduction
of walking time as well. A walk distance reduction by 52% is, e.g., achieved through
manual optimization in the case study in Finnsgård et al. (2011). A first operational
research approach for changing the line side part placement to minimize walking time
is described in Klampfl et al. (2006). However, they report rather long computation
times even for a small case study of just five part containers. Although manufacturers
demand sophisticated, intelligent decision support systems in this area, we are not aware
of further computational approaches in the literature. This research gap is moreover
explicitly identified in Boysen et al.’s (2015) recent review on automotive part logistics.

In this work, we address this gap by introducing a core model for line side part
placement with time-dependent walk times, analyze properties and construct tailored
optimization methods. In Section 2, we describe the setting and our model assumptions
that lead to a formal definition of the placement problem. Its applicability is described
for several walking strategies of walking atop and beside the conveyor. We highlight
polynomial cases of this model in Section 3 and study its computational complexity
in Section 4. Section 5 exploits these properties and introduces, for partially solved
problems, a lower bound on the objective. An exact, and a heuristic dominance rule
allow to compare partial solutions and eliminate dominated ones in Section 6. These
results are combined in a branch and bound algorithm in Section 7, from which we
deduce a heuristic version. We empirically evaluate their performance against several
heuristics and an integer programming approach in a numerical experiment in Section 8.
In Section 9, we evaluate the average savings potential compared to using the intuitive
placement strategy of ordering boxes in job sequence, and give a criterion that allows
practitioners to easily spot low performing instances. In Section 10, we conclude with a
research outlook to spark further work in the problem area.

2. Modeling

2.1. Formal Definition

In our formal definition, we use the term job for referring to an assembly operation in
conjunction with its preceding walk. Accordingly, the job’s processing time function
sums a time-dependent walking time and an assembly time. However in contrast to
most scheduling problems, the given job sequence is fixed. Instead, the box sequence is
variable. It places the boxes in a row side-to-side. Then, walk times to the boxes can be
calculated, although we defer their precise formula until Section 2.3. To minimize total
walking time or, equivalently, the last job’s completion time, we seek for an optimum
box sequence.

Definition 1 (Problem P). We are given a set of n jobs J = {1, . . . , n}. Each job j ∈ J
is given the assembly time lj ∈ Q≥0 and, for its corresponding box, a box width wj ∈ Q>0.
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Figure 2. Example instance of Figure 1 in terms of Definition 1: factors a = b = 0.1 and
n = 4 jobs, assembly times l1 = · · · = l4 = 2 all equal, a = b = 0.1 and n = 4 jobs, assembly
times l1 = · · · = l4 = 2 all equal, and box widths w1 = w2 = 4, w3 = w4 = 1. Optimum box
sequence S = 〈1, 3, 4, 2〉 reaches C4 = 8.584, the intuitive S′ = 〈1, 2, 3, 4〉 yields C ′4 = 8.822.
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Figure 3. Example instance with a = b = 0.1 and n = 4 jobs, assembly times l1 = · · · = l4 = 3 all
equal, and box widths w1 = · · · = w4 = 5 all equal, has the optimum box sequence S = 〈1, 2, 4, 3〉.

Total box width is Π =
∑

j∈J wj . We need to find a placement for the boxes which
is defined by a box sequence S : J → {1, . . . , n} that places the box of a job j ∈ J

at position πj =
∑

k∈J, S(k)<S(j) wk. Iteratively, for each job j ∈ J , we calculate start
time tj = Cj−1, with C0 = 0, and completion time Cj = Cj(tj) with Cj(t) = t+ pj(t),
start time dependent processing time pj(t) = lj + $j(t), and time-dependent walk
time $j(t). This yields the last completion time Cn. The objective is to find a box
sequence S that minimizes φ = Cn.

In Figure 2, we visualize the example instance from Figure 1 in terms of the formal
definition. In each job, the dashed line indicates the return from walking. As box 1 is
placed first, the walk time for job 1 is zero, thus p1 = l1. All other jobs j > 1 begin
with a nonzero walk time, hence pj > lj . A second example in Figure 3 has all-equal
assembly times and all-equal box widths. Finding an optimum box sequence is, however,
difficult because repositioning a box j impacts the processing time of all the jobs k ≥ j

in the job sequence. In turn, new start times of these jobs require a reoptimization of
all the corresponding boxes k > j. Although the problem setting might appear basic, it
adequately models a real world problem, see Section 2.2. Nonetheless, the underlying
structure is nontrivial and the problem is NP-hard in the strong sense as we show in
Section 4.
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2.2. Assumptions

With our model, we aim for a close depiction of reality, as well as for a subset of further
practice settings in order to gain generic insights. In the following, we dissect the practice
situation into several aspects, and denote how they are depicted in our model.

A1 (Single station). In practice, an assembly line is divided into a row of equal-
sized, separately operated stations. As the station’s length equals the distance between
succeeding workpieces, it contains exactly one workpiece at all times. Moreover, the
station’s line side is not shared with other stations. Therefore, we focus on one work
station and one workpiece.

A2 (Single worker). In practice, usually one worker is assigned to the same station,
although this can be extended to multiple workers (Becker and Scholl, 2009). Therefore,
our model considers operations and placement area of one worker. However, our model
can even depict the multiple worker case by assuming no interference occurs and each
worker’s material is placed on a separate, contiguous area.

A3 (Single product variant). In practice, a production-mix of multiple variants is
nowadays the norm. This is either achieved by placing a separate part container for each
variant, or by kitting parts of several variants in the same container. Kitting effectively
requires to consider a single model only, because the same part container is used in every
variant. As kitting is a common strategy in practice, we decide to focus on this variant
for our model. Hence, there is only one list of operations and no further containers.

A4 (Fixed operation sequence). In practice, workers may autonomously change the
order of some operations. We abstain from predicting this and assume an immutable list
of operations.

A5 (Single cycle). A cycle starts when the workpiece enters, and ends when it leaves
the station. In practice, a worker might finish a cycle early or late depending on
product variations and his or her current condition. Thus, he or she might float up- or
downstream the conveyor line. However, this is hard to predict. Therefore, we focus
on average assembly times and disregard floating. Hence, we only model a single cycle.
Then, each operation always happens at the same time and takes the same time.

A6 (Single work point). In practice, larger workpieces have several work points with
significant walking distance in between. However, such operations are usually marked
incompatible during line balancing and thus, they get assigned to different workers
anyhow (Becker and Scholl, 2009). Therefore, in most cases all assembly work happens at
one spatial point of workpiece on the moving conveyor, which is depicted in our model.

A7 (One box per operation). In practice, an operation sometimes requires parts of
several containers. However, even then it is advisable to store them side-by-side by to
avoid further walking time. We assume that this is the case and therefore subsume these
containers by an imaginary box that encompasses them. This also comprises stacked
containers in a rack or on a dolly.

6



Line Side Placement for Shorter Assembly Line Worker Paths Helmut A. Sedding

A8 (One-dimensional box placement). In practice, larger containers are placed on pallets
or dollies on the floor, while smaller containers are placed in racks along the line. Our
model indeed allows stacking of containers within a box as long as they correspond to
the same operation. Then, placement reduces to a single row of boxes at the line side.

A9 (No space between boxes). In practice, there is commonly a lack of space at the
line side. Therefore, we disallow space between boxes entirely in our model and place
boxes side-to-side without spacing.

A10 (Stationary box positions). In practice, container positions are not changed during
production, even if larger containers are sometimes on wheels or mounted on dollies or
overhead cranes. Accordingly, we assume fixed positions, and optimize them offline.

A11 (Uniform walking velocity). In practice, a worker requires time for acceleration and
deceleration. Moreover, heavier parts reduce the velocity. In this model, we approximate
walk times by using a constant average velocity for all parts. Then, walking time is linear
function of the distance.

A12 (One-dimensional walking). In practice, containers are placed as close to the
conveyor as possible to reduce walking time. Therefore, we assume that the containers
are within gripping distance. As a result, the worker only walks in parallel to the conveyor
belt. Hence, we calculate walking time by measuring distance in just one dimension
along the line.

A13 (One walk per operation). In practice, parts of an operation are fetched in one walk
just before the operation’s start. Hence, we model a walk at the start of each operation.
After that, each assembly time is constant. Additionally, the worker may bring along
parts for other operations as well. These parts are placed close to the other parts by to
avoid further walking, hence they can be subsumed by the same box. If, following that,
one of the corresponding operations no longer requires a separate walk, we join it with
its preceding operation into one longer operation. Hence, it again suffices to model one
walk per operation. With this approach, it is also possible to depict gathering all small
parts like screws in the walk of, e.g., the first operation, and additional larger parts in
later walks. If an operation requires no parts at all, we also append it to its preceding
operation, or, if it is the first, adjust the worker’s start time.

A14 (No pick time). In practice, the case study in Finnsgård et al. (2011) reports that
the picking time accounts for only 6% of the nonproductive time (mean picking time
1.6 seconds, mean walking time 26.4 seconds). Therefore, we ignore pick times.

A15 (Picking at upstream side). In practice, depending on the spatial arrangement of
parts within a box, the pick point at larger boxes may vary. We eschew modeling such
detail and thus settle on picking at a single point, the upstream (left) side of the box.
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2.3. Walking Strategies

A one-dimensional walk distance measurement suffices to model walking time along a
moving conveyor line (see assumption A12). Moreover, we show in the following that
walking time can be calculated by just a piecewise linear function of two pieces.

The conveyor moves linearly along the assembly line with constant velocity. Distance
is a size that can be measured by the amount of time it takes the conveyor to travel
it. Indeed, we let all measurements base on conveyor velocity vconv = 1, and scale all
distance measures accordingly to this unit (for example, box widths). Moreover, we
equate the workpiece’s position with time: at time t, the workpiece is at vconvt = t.
Furthermore, we express a box position by the time it is passed by the wokpiece.

For the worker, we assume a constant walking velocity v > vconv (see assumption
A11). Let us estimate, for some job j ∈ J , the worker’s walk time from the workpiece to
box position πj and back if the walk starts at t. If t = πj , the walk time is zero. Else, we
distinguish if

(a) the workpiece moves toward the box: t < πj ; or
(b) the workpiece moves away from the box: t > πj .

In each case, walk time is proportional to distance πj − t. Thus, walk time is calculated
by

$j(t) = max{a (πj − t) , b (t− πj)}, (1)

with a linear factor a ∈ (0, 1) for case (a), and a linear factor b ∈ (0,∞) for case (b).
We show in the following that by choosing a, b accordingly, it is possible to cover

all common walking strategies from reality. If the floor is fixed and just the workpiece
moves (as in Klampfl et al. (2006)), strategy (A) applies. If the floor plates move
together with the workpiece (as in Jaehn and Sedding (2016)), strategy (B) applies.
Their combination (C) applies if the worker can freely alternate between a fixed floor
and moving floor plates. These strategies are listed below. Additionally, Figure 4 depicts
the displacement of the worker, the workpiece, and a box for an example job.

Walking strategy (A). The worker walks beside the conveyor or underneath an
overhead conveyor. Here, the walk time if starting at time t is $j(t) from Equation (1)
with factor a = 2/(v + 1) ∈ (0, 1) and b = 2/(v − 1) ∈ (0,∞) for worker velocity v > 1.

Proof. Here, we fix the coordinate system on the floor. The target box has the constant
position f(t) = πj . Let us consider case (a). To walk to the box, starting at time t̂ at
position t̂vconv = t̂, the worker’s position is calculated by function g(t) = (t− t̂)v + t̂ =
tv + t̂ (1− v) for t ≥ t̂. Then, the box visit time t′ is g(t′) = f(t′) ⇐⇒ t′v + t̂ (1− v) =
πj ⇐⇒ t′ = πj/v + t̂ (1 − 1/v). For returning, the worker movement function is
h(t) = −(t− t′)v + f(t′), for t ≥ t′. Then, it meets the conveyor, which is described by
q(t) = t, at return time t′′, which is h(t′′) = q(t′′) ⇐⇒ −(t′′ − t′)v + πj = t′′ ⇐⇒ t′′ =
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Figure 4. In this example,
we show the displacement of the
worker during one job (drawn
with a solid thick line) in walking
strategy (A), (B), and (C). The
worker commences with the job
by leaving the workpiece (dotted
line) at time t̂, visits the box at
time t′, returns to the workpiece
at time t′′, remains there for as-
sembly time l̂, and completes
the job at time Ĉ. Additionally,
the diagram shows the displace-
ment of the corresponding box
(dashed line) to the workpiece
on the moving conveyor in the
course the job; they pass each
other at time π̂. It is visible that
walk time t′′ − t̂ is the same in
(A) and (B). However in (C),
the walk time is smaller, hence
t′′ and Ĉ are smaller as well (as
can be seen from the vertical,
dashed reference lines).

(πj + t′v)/(1 + v). Substituting t′, the walk time then is t′′ − t̂ = (πj − t̂) · 2/(1 + v) =
(πj − t̂) a. The walk time thus proportionally depends on the distance between the box
and the work point. Case (b) is calculated similarly. Here, the worker’s movement is
g(t) = −(t−t̂)v+t̂ = −tv+t̂ (1+v). Then, t′ is g(t′) = f(t′) ⇐⇒ t′ = −πj/v+t̂ (1+1/v).
Returning, the worker is at h(t) = (t− t′)v + f(t′), and meets the conveyor at t′′, which
is h(t′′) = q(t′′) ⇐⇒ t′′ = (πj − t′v)/(1 − v). The walk time in this second case is
t′′ − t̂ = (πj − t̂) · 2/(1 − v) = (πj − t̂) b. Both cases combined yield the stated walk
time.

Walking strategy (B). The worker walks upon the conveyor, which has mounted floor
plates. As in strategy (A), walk time is $j(t) from (1) with a = 2/(v + 1) ∈ (0, 1) and
b = 2/(v − 1) ∈ (0,∞) for v > 1.

Proof. Here, we fix the coordinate system on the product (moved by the conveyor), for
easing the calculation of the worker’s walk time. Again, this is depicted in Figure 4. We
begin with case (a). The box movement function then is f(t) = −t+πj . The worker starts
walking at time t̂. The worker’s forward movement is described by g(t) = (t− t̂)v, for t ≥ t̂.
The worker visits the box at time t′, thus g(t′) = f(t′) ⇐⇒ (t′ − t̂)v = −t′ + πj ⇐⇒
t′ = (πj + t̂v)/(1 + v). After that, the worker returns to the product by walking the same
path backward. Therefore, the walk time is 2(t′ − t̂) = (πj − t̂) · 2/(1 + v). Case (b) is
calculated similarly. The worker’s backward movement function is g(t) = −(t− t̂)v, for
t ≥ t̂. Then, g(t′) = f(t′) ⇐⇒ t′ = (πj − t̂v)/(1− v). Again doubling the distance for
including the return, the walk time is 2(t′ − t̂) = (πj − t̂) · 2/(1− v). Combining both
cases yields the stated walk time.
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Table 1. Numeric a, b values for walking strategies (A), (B), (C) and several v.

(A) and (B) (C)
v a b a b

2 0.667 2.000 0.556 1.250
4 0.400 0.667 0.360 0.562
8 0.222 0.286 0.210 0.266

16 0.118 0.133 0.114 0.129
32 0.061 0.065 0.060 0.063

Walking strategy (C). When walking forwards, the worker velocity adds to the
conveyor velocity. Therefore, we let the worker walk atop the moving conveyor floor
plates in the forward direction (strategy (B)). Backwards instead, we rather let the
worker walk beside the conveyor on the stationary floor, such that the opposing conveyor
velocity does not reduce his or her velocity (strategy (A)). In summary, the forward
velocity is 1 + v, and the backward velocity is v. Then, walk time at t is $j(t) from (1)
with a = (2v + 1)/(1 + v)2 and b = (2v + 1)/v2 for v > 1.

Proof. Shown by combining the proofs of strategy (A) and (B).

These results show that both walking strategy (A) and (B) yield the same walk
time. Therefore, neither walking beside nor walking atop the conveyor is superior.
However, their combination (C) allows to reduce the walk time significantly: for worker
velocity v = 13.6 as in Klampfl et al. (2006), factor a reduces by 3.5% and b by 4.1%.
Hence, it is advantageous to install moving conveyor floor plates and stationary edges at
assembly lines, as it enables workers to apply walking strategy (C).

All three described walking strategies are covered by the same piecewise linear function
in Equation (1). Moreover, as a < b in each strategy, the walk time is shorter if the
workpiece moves toward the box (case (a)). Exemplary a, b values for different worker
velocities v are shown in Table 1.

3. Polynomial Cases

In this section, we introduce polynomial cases of P. They are later used for analyzing
the complexity of P and to derive lower bounds.

Given an instance, let us sort the boxes by wj(1− a)j , for each j ∈ J . If this yields
a placement where each box is at or behind their job’s start time, this placement
is optimum. Hence, the instance is polynomially solvable. An example is depicted in
Figure 5.

Lemma 2. Given an instance of P with n jobs. Also given a start time t, and a value
F ≥ t. We require that the box of job 1 is placed at π1 = F . The box sequence is given by
S. We further require that by S, each box gets placed at or behind its job start: πj ≥ tj
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Figure 5. Given is an in-
stance with n = 4 jobs. The
first job starts at t1 = t.
Here, the boxes may only
be placed at and behind
F . The depicted placement
sorts the boxes nondecreas-
ingly by wj(1−a)j . Further-
more, each box j ∈ J is
placed at or behind its start
time (πj ≥ tj). Then, by
Lemma 2, this placement re-
sults in a minimum last com-
pletion time, here C4.

for all j ∈ J . If S is sorted nondecreasingly by wj(1− a)j, the last completion time Cn

is minimum.

Proof. First, we derive a closed formula for the completion time Cn of the last job n
by induction as follows. For ease of description, we express time duration t by a virtual
job 0, which starts at 0 and completes at t, with processing time p0. For this, we use
w0 = F, π0 = 0, l0 = p0. Thus, the job set extends to J ′ = {0} ∪ J = {0, 1, . . . , n}.

Given some box sequence S with S(0) = 0 (the virtual job being the first). For the
given S, the box positions then are πj =

∑S(j)−1
k=0 wS−1(k) for each j ∈ J ′.

We like to calculate Cn =
∑n

j=0 pj . For this, we need to know the value of pj for all
j ∈ J ′. We begin with the definition pj = lj + max{a (πj − tj), b (tj − πj)}. Knowing
that πj ≥ tj for all j ∈ J ′, we simplify it to pj = lj + a (πj − tj). Then,

pj = lj + a (πj − tj) ⇐⇒ pj = lj + a

S(j)−1∑
k=0

wS−1(k) −
j−1∑
k=0

pk

.
For j ∈ J , we define ∆(j) =

∑S(j)−1
k=0 wS−1(k) −

∑S(j−1)−1
k=0 wS−1(k). Then,

pj − pj−1 = lj − lj−1

− a
j−1∑
k=0

pk + a
j−2∑
k=0

pk

+ a

S(j)−1∑
k=0

wS−1(k) − a
S(j−1)−1∑

k=0
wS−1(k)

⇐⇒ pj − pj−1 = lj − lj−1 − apj−1 + a∆(j)
⇐⇒ pj − (1− a)pj−1 = lj − lj−1 + a∆(j). (2)

11
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This is a recurrence relation for pj , starting with p0. We reformulate this as a closed-form
expression. For j ∈ J , we define Φj = pj/(1− a)j . Then, from (2),

pj

(1− a)j
− (1− a)pj−1

(1− a)j
= lj − lj−1 + a∆(j)

(1− a)j

⇐⇒ pj

(1− a)j
− pj−1

(1− a)j−1 = lj − lj−1 + a∆(j)
(1− a)j

⇐⇒ Φj − Φj−1 = lj − lj−1 + a∆(j)
(1− a)j

.

The base case is Φ0 = p0 = t, therefore

Φj − Φ0 =
j∑

k=1
Φk − Φk−1

⇐⇒ Φj − Φ0 =
j∑

k=1

lk − lk−1 + a∆(k)
(1− a)k

⇐⇒ pj

(1− a)j
= p0 +

j∑
k=1

lk − lk−1 + a∆(k)
(1− a)k

⇐⇒ pj = t (1− a)j +
j∑

k=1
(lk − lk−1 + a∆(k)) (1− a)j−k

We use this closed form expression for pj to calculate Cn:

Cn =
n∑

j=0
pj

=
n∑

j=0

t (1− a)j +
j∑

k=1
(lk − lk−1 + a∆(k)) (1− a)j−k


=

n∑
j=0

t (1− a)j +
j∑

k=1
(lk − lk−1) (1− a)j−k

+
n∑

j=0

j∑
k=1

a∆(k) (1− a)j−k. (3)

Changing the box sequence S only influences the last term in line (3), which we denote
by µ. Using equation

∑n
j=k(1−a)j−k = (1− (1− a)n−k+1)/a, S(0) = 0,

(
1−(1−a)1) = a,

and
(
1− (1− a)n−j

)
−
(
1− (1− a)n−j−1) =

(
(1− a)−1 − 1

)
(1−a)n−j = a (1−a)n−j−1,

we reformulate µ:

µ =
n∑

j=0

j∑
k=1

a∆(k) (1− a)j−k

=
n∑

k=1
∆(k) a

n∑
j=k

(1− a)j−k

=
n∑

k=1
∆(k)

(
1− (1− a)n+1−k)

12
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=
n∑

j=1

(
1− (1− a)n+1−j)S(j)−1∑

k=0
wS−1(k) −

S(j−1)−1∑
k=0

wS−1(k)


= −

(
1− (1− a)n+1−1) S(1−1)−1∑

k=0
wS−1(k)

+
n∑

j=2

((
1− (1− a)n+1−(j−1))− (1− (1− a)n+1−j)) S(j−1)−1∑

k=0
wS−1(k)

+
(
1− (1− a)n+1−n) S(n)−1∑

k=0
wS−1(k)

= a

S(n)−1∑
k=0

wS−1(k) +
n−1∑
j=1

((
1− (1− a)n+1−j)− (1− (1− a)n−j)) S(j)−1∑

k=0
wS−1(k)

= a

S(n)−1∑
k=0

wS−1(k) + a
n−1∑
j=1

(1− a)n−j
S(j)−1∑

k=0
wS−1(k)

= a
n∑

j=1
(1− a)n−j

S(j)−1∑
k=0

wS−1(k)

= a
n∑

j=0
wj

n∑
k=S(j)+1

(1− a)n−S−1(k).

Term µ is minimized if S is sorted nondecreasingly by wj(1 − a)j . We show this
by contradiction, using an adjacent job interchange argument. Let j, j′ be two jobs
in a schedule S̃ with S̃(j) + 1 = S̃(j′) and wj(1 − a)j > wj′(1 − a)j′ . Suppose, for a
contradiction, that term µ̃ in S̃ is minimal. Construct a second schedule Ṡ, identical
to S̃ with the exception that Ṡ(j) = S̃(j′) and Ṡ(j′) = S̃(j), hence j and j′ are
swapped. Then, the corresponding µ̃ and µ̇ are almost identical, except that µ̃ contains
summand x̃ = awj(1−a)n−j′ , and µ̇ contains ẋ = awj′(1−a)n−j . That is, µ̃− x̃ = µ̇− ẋ,
and wj(1− a)j > wj′(1− a)j′ ⇐⇒ wj(1− a)−j′ > wj′(1− a)−j ⇐⇒ awj(1− a)n−j′ >

awj′(1−a)n−j ⇐⇒ x̃ > ẋ ⇐⇒ µ̃ > µ̇. It follows that µ̃ is not minimum. This completes
the contradiction: any schedule that is not sorted nondecreasingly by wj(1− a)j does
not possess a minimum term µ.

A symmetric polynomial case follows if sorting the boxes nonincreasingly by wj(1+b)j

results in start times that all are at or behind their box.

Lemma 3. Given an instance of P with n jobs. Also given a start time t, and a value
F ≤ t. We require that the box of job 1 is placed at π1 = F . The box sequence is given
by S. We further require that by S, each box gets placed at or before its job start: πj ≤ tj

for all j ∈ J . If S is sorted nonincreasingly by wj(1 + b)j, the last completion time Cn

is minimum.

13
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Proof. The proof is analogous to the proof of Lemma 2. Here instead, pj can be
simplified to pj = lj + b (tj − πj). The remaining steps are similar. Therefore, we omit a
full proof here.

4. Computational Complexity

For analyzing the computational complexity of P , we need to specify a decision version
of P . As usual for minimization problems, this is done by setting a threshold τ for the
objective φ. If, for a given instance, there exists a solution with objective φ ≤ τ , the
instance is called a Yes-instance. Else, it is called a No-instance. Then, it is possible to
polynomially reduce from, e.g., the NP-hard Partition Problem (Garey and Johnson,
1979, p. 47) to the decision version of P . However, a stronger result is a reduction from
the strongly NP-hard Three Partition Problem (Garey and Johnson, 1979, p. 96), which
follows.

Definition 4 (Three Partition Problem (3P) (Garey and Johnson, 1979)). Given a
bound B ∈ N and 3z elements in multiset X = {x1, . . . , x3z} ⊂ N with B/4 < xj < B/2,
j = 1, . . . , 3z, and

∑
x∈X x = zB. The question is: does there exists a partition of X

into disjoint multisets A(i), i = 1, . . . , z with
∑

x∈A(i) x = B?

In such a partition, each multiset consists of three elements. For any 3P instance,
denoted by 3PI , we introduce a corresponding instance of P ’s decision version:

Definition 5 (PI). Given a 3P instance 3PI . Then, the corresponding P instance
PI is as follows. Set a = b = 1/(3z). Define q =

⌈
log1+b 2(z + b+ zB)/b

⌉
and r =

b2/(1 − (1 + b)−q). Note that r is polynomial in the input size as q is a rounded up
logarithm of input sizes. Then, we construct an instance of n = z + q + 3z jobs that are
in a sequence of three parts:

(1) z filler jobs j = 1, . . . , z with box width wj = 1 and assembly time lj = B + 1,
(2) q enforcer jobs j = z + 1, . . . , z + q with equal box width and assembly time wj =

lj = r/(1 + b)j−z,
(3) 3z partition jobs j = z + q + 2, . . . , n with box width wj = xj and assembly

time lj = 0.

The total box width of enforcer jobs is
∑

j=z+1,...,z+q wj = r
∑

i=1,...,q(1 + b)−i = r · (1−
(1 + b)−q)/b = b. Of all jobs, total box width is Π = z + b+ zB. The sum of assembly
times is z(B + 1) + a = Π as well. At last, we set τ = de · Πe as threshold (e is Euler’s
number). As z ≥ 1 and B ≥ 3, there is Π ≥ 4 and τ < 3 · Π.

An example of a Yes-instance is given and visualized in Figure 6.

Lemma 6. Given a 3P instance 3PI and the corresponding P instance PI . If 3PI is a
Yes-instance, then there exists a solution of PI with φ < τ .

14
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jobs

boxes

0 Π τφ

Figure 6. Given is an instance PI of P that corresponds to a 3P Yes-instance 3PI with B = 12
and z = 4. Thus, a = b = 1/12, q = 90, n = 106, Π =

∑n
j=1 wj =

∑n
j=1 lj = 52 + 1/12, and

τ = 142. The job sequence begins with z filler jobs, then has q enforcer jobs, and finishes with
3z partition jobs. The partition jobs start behind Π. The box sequence alternates between a filler
job box and three partition job boxes, then ends with all q enforcer job boxes. For the partition
jobs, we just depicted their upper bound processing time, which emerges if assuming πj = 0 for
each partition job j. This visualizes that for any Yes-instance, there exists a solution with φ < τ in
PI , see Lemma 6.

Proof. Given a Yes-instance 3PI and a solution A(i), i = 1, . . . , z. Let us construct
a placement S for the corresponding instance PI . For each filler job j = 1, . . . , z, set
πj = (j − 1)B. Then, for i = 1, . . . , q, set πz+i = z + zB + r

∑
k=1,...,i(1 + b)−i. The

partition jobs are placed between the filler jobs: For each i = 1, . . . , z and xj ∈ A(i), we
set πz+q+i = (i− 1)(B + 1) +

∑
{xj′∈A(i)|j′<j} xj′ . There is no gap and no overlap in the

constructed placement, therefore it is feasible. All filler and enforcer jobs j = 1, . . . , z+ q

start at tj = πj . Hence, the first partition job, z + q + 1, starts at Cz+q = Π. By this,
each partition job j = z + q + 1, . . . , n is late, as it needs to be placed before Π. Still,
πj is positive. As a result, Cj = Cj−1 + b (Cj−1 − πj) > Cj−1 + bCj−1. Solving this
recurrence for all 3z partition jobs yields Cn < (1 + b)3z Cr where Cr = Π. Therefore, the
objective φ = Cn of this placement is bounded from above by φ < Π · (1+b)3z < Π ·e < τ

with the known inequality (1 + 1/x)x < e.

Lemma 7. Given a 3P instance 3PI and the corresponding P instance PI . If 3PI is a
No-instance, then all solutions of PI have φ > τ .

Proof. Given a No-instance 3PI and the corresponding instance PI . Consider a place-
ment S with minimum objective φ∗. As 3PI is a No-instance, there exists no partition
of the elements into triple-sets A(i), i = 1, . . . , z, of equal size B. Hence, in placement S,
there is least one filler job j ≤ z with |tj − πj | ≥ 1, thus pj ≥ lj + a. Therefore,
Cz ≥ Π − a + a = Π. Now, all enforcer jobs are late. By Lemma 3, sorting the boxes
by wj−zβ(j − z) = r minimizes Cz+q. As the sort criterion has equal value r for each
of the enforcer jobs, any order yields the same Cz+q value. Then, the recurrence for
j = z + 1, . . . , z + q is

Cj = Cj−1 + lj + b (Cj−1 − (Π−
∑

k=z+1,...,j

wk))

= (1 + b)Cj−1 − bΠ + r

(1 + b)j−z
+

∑
k=1,...,j−z

br

(1 + b)k

15



Line Side Placement for Shorter Assembly Line Worker Paths Helmut A. Sedding

= (1 + b)Cj−1 − bΠ + r

 1 + b

(1 + b)j−z
+

∑
k=1,...,j−z−1

b

(1 + b)k


= (1 + b)Cj−1 − bΠ + r

(
(1 + b)−(j−z−1) + 1− (1 + b)−(j−z−1)

)
= (1 + b)Cj−1 − bΠ + r.

Dividing both sides with (1 + b)j yields

Cj

(1 + b)j
= Cj−1

(1 + b)j−1 + r − bΠ
(1 + b)j

.

Then, let Sj = Cj/(1 + b)j−z. Thus, Sz ≥ Π/(1 + b)0 = Π and, for j = z + 1, . . . , z + q,
there is Sj = Sj−1 + (r − bΠ)/(1 + b)j−z. Rewriting Sz+q as a sum, we have

Sz+q = Sz +
∑

j=z+1,...,z+q

r − bΠ
(1 + b)j−z

= Sz + (r − bΠ)1− (1 + b)−q

b
.

Returning to Cz+q, we obtain the closed form

Cz+q = Sz+q · (1 + b)q

= Sz · (1 + b)q + (r − bΠ) ·
(
1− (1 + b)−q) · (1 + b)q/b

= Sz · (1 + b)q + b(1 + b)q − Π ·
(
1− (1 + b)−q) · (1 + b)q

= Sz · (1 + b)q + b(1 + b)q − Π · ((1 + b)q − 1)
≥ Π · (1 + b)q + Π · (1− (1 + b)q) + b(1 + b)q

= Π + b(1 + b)q = Π + b(1 + b)log1+b 2Π/b

= 3 · Π > τ.

Processing times for jobs j > z + q are not negative, thus Cn > τ .

Theorem 8. The decision version of P is strongly NP-complete.

Proof. For any 3PI , there is a corresponding PI . By Lemmata 6 and 7, instance PI is
a Yes-instance if and only if 3PI is a Yes-instance. Therefore, we constructed a reduction
from 3P to P . Testing for φ < τ is done in polynomial time, thus P is in NP. As 3P is
strongly NP-complete, and the reduction is pseudopolynomial, we conclude that P is
strongly NP-complete.

5. Lower Bound

To construct a branch and bound algorithm for P, it is necessary to calculate a lower
bound on the minimum attainable objective value of a possibly empty partial solution.
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3
π5
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Figure 7. In the depicted partial schedule, jobs 1 and 4 are fixed: JF = {1, 4}. The lower bound
places open boxes 2 and 3 behind the fixed boxes, while it places box 5 just before Π.

We let such a partial schedule be expressed by a possibly empty box sequence S. The
set of jobs placed in S is called the fixed job set JF ⊆ J . Their boxes are placed in
the order of S beginning from 0. Thus, they occupy a contiguous space that ends at
F =

∑
j∈JF

wj . The partial schedule is extended to a full schedule by appending the
remaining open jobs JO = J \ JF to S in some order. As this order is undetermined for
a partial schedule, we construct a lower bound on the objective value attained by S and
any order of appending the remaining open boxes. Note that in any of these solutions,
the box of an open job j ∈ JO is placed in the interval [F, Π− wj ].

We begin with the construction of two preliminary lower bounds derived from Lemma 2
and 3, respectively. In the first, we select a job subset J ′ ⊆ JO and place their boxes in
nondecreasing order of wj(1− a)j at and behind F . Then, we set for each remaining job
j ∈ JO \ J ′ a box position πj = max{F, tj}, which is as near to tj as it may occur in a
solution. Finally, we compute the start and completion times of all jobs, which results in
some objective value. If and only if πj ≥ tj for all j ∈ J ′, by Lemma 2, this objective
value is a lower bound on the given partial schedule.

The second preliminary lower bound is constructed symmetrically, using Lemma 3.
Here, we place the boxes of J ′ in nonincreasing order of wjβ(j) directly before Π. For
the remaining jobs j ∈ JO \ J ′, we set the box positions to πj = min{tj , Π− wj} ≤ tj .
Again, we compute the start and completion times of all jobs, resulting in some objective
value. If and only if πj ≤ tj for all j ∈ J ′′, by Lemma 3, this objective is a lower bound
on the given partial schedule.

Sorting the boxes is the runtime bottleneck of both preliminary lower bounds. However,
these orders only rely on constant sorting criteria. Therefore, we calculate both orders in
advance for all jobs J . Then, the bounding step only needs to select the relevant boxes
from the sorted lists, merely taking O(n) time.

Let us then integrate the two preliminary lower bounds into one. This is summarized
in Algorithm 1. Here, the jobs J = {1, . . . , n} are iteratively visited, from first to last.
After each iteration, i.e., after having visited jobs 1, . . . , j, the value t is a lower bound
on their completion time. Also, t is a lower bound on the start time of the succeeding
job j + 1. If a job j is in JF, its box position πj is known. Then, we increase t by the
according processing time pj(t). If a job j is in JO, its box is preliminarily placed to the
nearest possible place, πj = min{Π− wj ,max{F, t}}. However, if there are jobs after j
that are also in JO, we group them into set J ′, and try to place their boxes according
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Algorithm 1. Combinatorial lower bound for P
1: function LowerBound(J = {1, . . . , n}, JF ⊆ J, πj for all j ∈ JF)
2: t← 0, j ← 0, F :=

∑
j∈JF

wj . t is current start time, j is current job
3: while j < n do
4: j ← j + 1 . iterate job sequence
5: if j ∈ JF then . j is a fixed job
6: t← Cj(t)
7: else . j is an open job
8: for jmax ← max {j′ | ({j, j + 1, . . . , j′} ∩ JF) = {}} to j step −1 do
9: . find large J ′ set

10: if jmax = j then . fallback case if only J ′ = {j} is possible
11: πj ← Nearest-GCD-Multiple(t) . round box position
12: πj ← min{Π− wj ,max{F, πj}} . constrain box position to limits
13: t← Cj(t)
14: else
15: J ′ = {j, . . . , jmax}
16: if t ≤ F then . place J ′ according to polynomial cases
17: place J ′ nonincreasingly by wj(1− a)j at F and behind
18: else
19: place J ′ nondecreasingly by wj(1 + b)j before Π
20: t′ ← t . temporarily calculate next start time
21: for j′ ← j to jmax do . test if jobs in J ′ fulfill polynomial conditions
22: if (t ≤ F ∧ t′ ≤ πj′) ∨ (t ≥ F ∧ t′ ≥ πj′)) then
23: t′ ← Cj′(t′)
24: else
25: t′ ←∞
26: if t′ 6=∞ then
27: t← t′, j ← jmax . conditions are fulfilled, now continue after jmax
28: exit for
29: C

(LB)
j ← t

30: return t

to the two preliminary lower bounds described above. The grouping step heuristically
maximizes the J ′ set of open jobs that meet the conditions. For this, it tests subsets
of the smallest k elements in JO. A linear search for maximizing k delivers a J ′ set in
reasonably small, quadratic time. Then, the total runtime for checking a partial schedule
is O(n · |JO|). The resulting lower bound is illustrated by an example in Figure 7.

The lower bound is further improved by an additional step in Algorithm 1, which
is dedicated to open jobs that are not covered by either of the above rules. In the
description above, we place such a job j at its lower bound start time πj = tj . However,
box widths often follow a certain scheme in practice, e.g., divisions of ISO1- or EUR-
pallets. Therefore, we can improve this placement by rounding it to a multiple of the
greatest common divisor of all box widths. As rounding step needs to ensure a lower
bound on Cj , hence, we round to the nearest multiple with the smallest possible walk
distance. For example, with a greatest common divisor of 1, the nearest multiples are
dte and btc, hence the job is either early or late. If (dte − t) a < (t− btc) b, the rounded
up value leads to a smaller walk distance, hence we set πj = dte. Else, we set πj = btc.
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Figure 8. The depicted instance has a = b = 0.1 and n = 6 jobs with assembly times l1 =
1, l2 = 4, l3 = · · · = l6 = 1, box widths w1 = · · · = w5 = 1, w6 = 6. Displayed is (a) partial
schedule S = 〈2, 4, 1〉 and (b) partial schedule S′ = 〈2, 1, 4〉 that swaps boxes 4 and 1. The open
jobs 3, 5, 6 are arranged by Algorithm 1, but neither S nor S′ is pruned by bounding because the
optimum value C∗6 is larger than the depicted lower bound placement. Nonetheless, the dominance
rule shows that S′ dominates S for all possible placements of the open jobs 3, 5, 6. Therefore, it
allows us to prune S.

6. Dominance Rule

6.1. Exact Dominance Rule

Dominance conditions are a common strategy for speeding up search algorithms like
branch and bound by allowing for a comparison of partial solutions. We say that a partial
schedule S is dominated by partial schedule S′ if the objective for S′ is smaller than the
objective for S for any possible placement of the open jobs. The corresponding search
branch for S can then be eliminated, thereby speeding up the search. In the following,
we introduce a dominance rule that checks if a partial schedule is dominated by a partial
schedule that swaps the boxes of the last two fixed jobs, or swaps the last job’s box with
any other fixed box of the same width. Note that any such swap operation allows to
keep all other fixed boxes at the same place, which we require for proving correctness of
the dominance rule. Moreover, we only consider swapping the last fixed box with some
other box as, e.g., if used in a Branch and Bound search, any preceding box is already
tested earlier in the search tree. An example with a fulfilled dominance condition on a
swap of the last two fixed boxes is shown in Figure 8.

To compare partial schedules S and S′, we need to take all possible placements for
each open job into account. Say that S and S′ have the same set of fixed jobs. Then,
we only need to compare S and S′ at equal placements of the open jobs. For this, we
need to relate each job’s completion times in both schedules. If the job is started at
time t in S, it is started at time t − δ in S′ for a given pair 〈t, δ〉i, where δ denotes
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the difference t− t′ of start times. In any such pair, the two values are a result of an
equal placement of all preceding open jobs. This gives a recurrence relation for 〈t, δ〉i.
The corresponding pair of the next job i + 1 if placing the boxes at πi in S and at
π′i in S′ is 〈t‘, δ‘〉i+1 = 〈Ci(t), Ci(t) − C ′i(t − δ)〉i+1. If a job i is fixed, πi and π′i are
determined. If i is an open job, the placement value is undetermined, but situated at
equal positions πi = π′i ∈ [F,Π− wi] in the remaining space. Hence, we commence with
〈t, 0〉1 and continue inductively until reaching the virtual job n+ 1 with 〈t, δ〉n. If this δ
is positive in all pairs 〈t, δ〉n+1, then S′ dominates S. However, generating this pair for
all possible placements requires an exhaustive search. In the following, we constrain the
search and merely generate relevant pairs.

We define Tj = [tmin
j , tmax

j ] as the range of possible start times of a job j. Start and
end of the interval describe a lower and an upper bound on start time of job j for
all possible placements of the open jobs JO. A lower bound is obtained for some jobs
during execution of Algorithm 1: Let q ≤ j be the last job for which Algorithm 1 set a
C

(LB)
q value. Then, we can use tmin

j = C
(LB)
q +

∑
r=q+1,...,j−1 lr. An upper bound value is

obtained by subtracting assembly times of succeeding jobs from a global upper bound UB
on Cn, i.e., tmax

j = UB −
∑

k=j,...,n lk. Note these bounds relate tmin
j + lj = tmin

j+1 and
tmax
j + lj = tmax

j+1 for all j = 1, . . . , n− 1.
We are given a partial schedule S and two fixed jobs j, k, j < k, for which either

πk = πj + wj , πj = πk + wk, or wj = wk hold. Consider partial schedule S′ which places
the boxes equally except for swapping the box placement of j and k. Note that a swap of
j and k affects no other box position. Therefore, completion times of jobs q < j remain
the same. Moreover, job j starts at the same time in S and in S′. Also, T′j = Tj and
〈t, 0〉j for all t ∈ Tj .

Property 9. Given pair 〈t, 0〉j for start time t ∈ Tj of job j and πj + ω = π′j. Let
〈t‘, δ‘〉j+1 be a corresponding pair for job j + 1. If ω ≥ 0, there is −aω ≤ δ‘ ≤ bω,
else bω ≤ δ‘ ≤ −aω. Moreover, δ‘ is extremal if it equals δ(a) or δ(b) in 〈tmin

j+1, δ
(a)〉j+1,

〈tmax
j+1 , δ

(b)〉j+1.

Proof. Given start time t, there is

δ‘ = Cj(t)− C ′j(t)
= max{a(πj − t), b(t− πj)} −max{a(π′j − t), b(t− π′j)}
= max{a(πj − t), b(t− πj)}+ min{−a(π′j − t), b(π′j − t)}

= max{a(πj − t) + min{−a(πj + ω − t), b(πj + ω − t)},
b(t− πj) + min{−a(πj + ω − t), b(πj + ω − t)}}

= max{min{−aω, (a+ b)(πj − t) + bω},
min{−(a+ b)(πj − t)− aω, bω}}.
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If (a+ b)(πj − t) + bω ≤ −aω, there is (a+ b)(πj − t+ ω) ≤ 0. However, if ω ≥ 0, there
is (a+ b)(πj − t+ω) ≤ −(a+ b)(πj − t) and (a+ b)(πj − t) + bω ≤ −(a+ b)(πj − t)− aω.
Thus, for ω ≥ 0, there is δ‘ = max{−aω, min{(a + b)(t − πj) − aω, bω}}. Case ω ≤ 0
is analogous, there is δ‘ = max{min{−aω, (a+ b)(πj − t) + bω}, bω}. Moreover, δ‘ is a
monotonic function of t ∈ Tj in both cases. Hence, it is extremal for extreme values of
t.

Depending on πj and πk, the value of ω is either positive or negative. We denote
extremal value pairs by 〈t(a), δmin〉j+1 and 〈t(b), δmax〉j+1, obtained from 〈tmin

j , 0〉j and
〈tmax

j , 0〉j . Note that t(a) is the larger value if ω is negative.
The box of job q, with j 6= q 6= k, is placed at the same position πq = π′q in both

S and S′. The difference of its completion time between S and S′ is both influenced
by box positions πq = π′q and by the start times as defined by 〈t, δ〉q. Furthermore, if
q ∈ JO, its box position is undetermined. Even then, we can, however, state bounds for
the start time difference if we restrict our considerations to same signs of all difference
values δ of job q, i.e., require that δmin

q · δmax
q ≥ 0.

Property 10. Given a job q ∈ J \{j, k} with πq = π′q and 〈t, δ〉q. For this, let 〈t‘, δ‘〉q+1

be the corresponding pair of job q + 1. If δ‘ ≥ 0, then (1 − a)δ ≤ δ̂‘ ≤ (1 + b)δ.
Else, (1 + b)δ ≤ δ‘ ≤ (1 − a)δ. Moreover, δ‘ is extremal for this placement if 〈t, δ〉q ∈
{〈t(a), δmin〉q, 〈t(b), δmax〉q}.

Proof. Let t′ = t− δ. Then,

δ‘ = Cq(t)− Cq(t′)
= δ + max{a(πq − t), b(t− πq)} −max{a(πq − t′), b(t′ − πq)}

= δ + max{a(πq − t), b(t− πq)}+ min{−a(πq − t′), −b(t′ − πq)}

= δ + max{min{a(πq − t)− a(πq − t′), a(πq − t)− b(t′ − πq)},
min{b(t− πq)− a(πq − t′), b(t− πq)− b(t′ − πq)}}

= δ + max{min{−aδ, −aδ + (a+ b)(πq − t′)},min{bδ + (a+ b)(t′ − πq), bδ}}

= δ + max{−aδ + min{0, (a+ b)(πq − t′)}, bδ + min{(a+ b)(t′ − πq), 0}}

= δ + max{−aδ + min{0, (a+ b)(πq − t+ δ)}, bδ + min{(a+ b)(t− δ − πq), 0}}.

As min{0, x} ≤ 0 for any number x, we derive the stated bounds for δ‘. Furthermore, δ‘
is a monotonic function of t and δ. Therefore, the extrema of δ‘ are obtained for extremal
values of both t and δ.

Finding extremal values for the difference is similar for job k.

Property 11. For job k, we are given placements πk, π′k and 〈t, δ〉k. Let 〈t‘, δ‘〉k+1 be
the corresponding k + 1 pair. Then, δ‘ is extremal if 〈t, δ〉k ∈ {〈t(a), δmin〉k, 〈t(b), δmax〉k}.
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Proof. Let t′ = t− δ and γ = πk − π′k. Then,

δ‘ = Ck(t)− C ′k(t′)
= δ + max{−a(t− πk), b(t− πk)} −max{−a(t′ − π′k), b(t′ − π′k)}

= δ + max{−a(t− πk), b(t− πk)} −max{−a(t′ + γ − πk), b(t′ + γ − πk)}

= Ck(t)− Ck(t′ + γ).

Adding γ to t′, we establish difference δ̄ = δ−γ. As the offset to δ is constant, Property 10
applies for πk and 〈t, δ̄〉k.

In Properties 9, 10, and 11, the function for δ‘ is monotonic. Therefore, a larger range
for t (which we have) only extends the extremal value range of δ.

If q ∈ JO, its box position πq is undetermined. Thus, we cannot find precise extremal
values for δ̂q. Nonetheless, given difference δ, a lower bound on the succeeding δ‘ is
determined by multiplying δ with 1− a if δ is nonnegative, else with 1 + b. The sign of
δ‘ equals the sign of δ. Therefore, we can inductively state for all q, where j < q < k,
that the sign of δ‘ for job q equals the sign of the difference δ̂ after job j, and

δ‘ ≥ δ̂ ·

(1− a)q−j , δ̂ ≥ 0,
(1 + b)q−j , else.

(4)

Similarly, we can inductively state for all q > k that the sign of δ‘ for job q equals the
sign of δ̌, the difference after job k. Hence, we barely need to compute δ̂ for tmin

j and
tmax
j , multiply it for a lower bound as in (4), and calculate δ̌ for tmin

k and tmax
k . If δ̌ > 0

for both start times, we now can say that Cn > C ′n for all possible open job placements.
In this case, partial schedule S′ dominates S.

The runtime of testing the described dominance criterion on S, S′ is O(n) in a
naïve implementation. We can precompute a list of cumulated assembly times, size n.
Furthermore, Algorithm 1 can store, for each job j ∈ J , a pointer to the last job q ≤ j

for which it calculated a lower bound on the completion time, i.e., C(LB)
q ≥ 0. The

resulting steps are described in Algorithm 2. This reduces the runtime of the dominance
criterion to constant time O(1) for comparing S to S′.

6.2. Heuristic Dominance Rule

Integrating more than an adjacent box swap results in a change of more than two box
positions. Then, upper and lower bounds of the difference between two partial schedules
are not only harder to obtain, but of inferior quality. Nonetheless, it is still of interest
to conduct a comparison of two partial schedules S, S′ with the same set of fixed jobs
but placing more than two boxes at different positions. Of course, appending the same
sequence of open jobs to both S and S′ allows comparing objective values. Testing
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Algorithm 2. Dominance rule for P
1: function CheckDominance(J = {1, . . . , n}, UB, JF ⊆ J , j, k ∈ JF for j < k, sequence S

with box positions πj , πk (either adjacent or with wj = wk), and sequence S′ with swapped
π′j , π

′
k)

2: tmin ← t′min ← max{C(LB)
q +

∑
r=q+1,...,j−1 lr | q ≤ j} . initialize earliest start time of j

3: tmax ← t′max ← UB −
∑

k=j,...,n lk . initialize latest start time of job j
4: tmin ← Cj(tmin), t′min ← C ′j(tmin) . process job j
5: tmax ← Cj(tmax), t′max ← C ′j(tmax)
6: δ̂min

j ← tmin − t′min . calculate difference
7: δ̂max

j ← tmax − t′max
8: if δ̂min · δ̂max ≥ 0 then . constrain to differences of same sign
9: if δ̂min ≥ 0 and δ̂max ≥ 0 then

10: δ̂
(LB) min
k−1 ← δ̂min

j · (1− a)j−k . calculate lower bound on difference
11: δ̂

(LB) max
k−1 ← δ̂max

j · (1− a)j−k

12: else
13: δ̂

(LB) min
k−1 ← δ̂min

j · (1 + b)j−k

14: δ̂
(LB) max
k−1 ← δ̂max

j · (1 + b)j−k

15: tmin ← tmin +
∑

q=j+1,...,k−1 lq . calculate earliest start of job k
16: tmax ← tmax +

∑
q=j+1,...,k−1 lq

17: t′min ← tmin − δ̂(LB) min
k−1 . calculate latest start of job k

18: t′max ← tmax − δ̂(LB) max
k−1

19: tmin ← Ck(tmin), t′min ← C ′k(tmin) . process job k
20: tmax ← Ck(tmax), t′max ← C ′k(tmax)
21: if tmin > t′min ∧ tmax > t′max then . check if swapped completes earlier
22: return swapped-is-dominant
23: return swapped-is-non-dominant

dominance with all possible sequences of the open jobs requires, however, an exponential
search in the worst case. To avoid this, we pick out corner cases of placing the open
jobs. Although this yields only a heuristic dominance rule, it is relatively effective if
these corner cases are representative of many other open job placements. Then, if S′

dominates S for all these corner cases, we can decide that S is probably not leading to
an optimum solution.

In particular, we pick the following two corner cases of placing the open jobs JO:

(a) set πj = F for all j ∈ JO,
(b) set πj = Π− wj for all j ∈ JO.

Both corner case placements are in fact infeasible. Still, we can calculate each resulting
objective Cmax, and compare S to S′ for each corner case. The rationale for picking
these two corner cases is as follows. The jobs can be looked at in segments, namely X
and Y : the jobs that start before F , and those that start at or after F . Let us consider
segment X. Here, corner case (a) starts each job in X as early as possible, while (b)
starts them as late as possible. Hence, the corner cases cover both extremes in the
X segment. Secondly, we look at segment Y . In Y , all fixed jobs are necessarily late.
Any further delay has a proportional effect on each of the fixed jobs, only caused by
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the open job placement. Therefore, as long as each open job’s placement is the same in
both corner cases, the exact place is unimportant. Note that the division into the X
and Y segments may differ between each corner case and between schedules. Still, the
comparison is fair as the boxes are equally placed in both schedules, respectively for
each corner case.

Thus, the heuristic compares each partial schedule only by each corner case’s objective
value. Moreover, it suffices to conduct only a single comparison, which ideally is to the
best known partial schedule with the same set of fixed jobs. Therefore, each time we
visit a non-dominated partial schedule, we store each of the two corner case’s Cn value
in memory. The set of fixed jobs can be encoded by a binary vector of length n that
determines membership of each job in set JF. Hence, we store at most 2n values for each
corner case in a table. If available memory is limited, one may reduce the number of
stored values to a constant size with a memory cache. Concluding, calculating the corner
case objectives takes O(n) and comparing S to all previously checked partial schedules
with the same set of fixed jobs takes O(1) time.

7. Solution Algorithms

Approaches for computationally solving instances of P are manifold. In this chapter,
we first introduce a mixed integer program (MIP) and heuristic methods. Then, the
described lower bound (Section 5) and dominance rules (Section 6) are utilized in a
branch and bound algorithm. Finally, we derive a heuristic version of the branch and
bound algorithm.

7.1. Mixed Integer Program

The box placement problem is described as a sequencing problem, which lends for an
application of established modeling strategies for single machine scheduling (Błażewicz
et al., 1991; Keha et al., 2009; Pinedo, 2016). In a preliminary test between MIP
approaches, we compared time indexing, linear ordering/sequencing variables, and
disjunctive box overlapping constraints. The latter turned out as the quickest variant by
far. Therefore, we describe it in the following.

For each job j = 1, . . . , n, there is a completion time variable Cj and a box placement
variable πj . To determine a box sequence, we introduce binary variables xjk, 1 ≤ j <

k ≤ n, each of which is zero if box k is placed before box j and one otherwise.

minimize Cn (5a)
subject to C0 = 0, (5b)

Cj ≥ Cj−1 + lj − a (Cj−1 − πj), 1 ≤ j ≤ n, (5c)
Cj ≥ Cj−1 + lj + b (Cj−1 − πj), 1 ≤ j ≤ n, (5d)
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πj + wj ≤ πk + Π · (1− xjk), 1 ≤ j < k ≤ n, (5e)
πk + wk ≤ πj + Π · xjk, 1 ≤ j < k ≤ n, (5f)

0 ≤ πj ≤ Π− wj , 1 ≤ j ≤ n, (5g)
xjk ∈ {0, 1}, 1 ≤ j < k ≤ n. (5h)

Constraint (5b) sets start time for the first job to zero. Constraints (5c) and (5d) calculate
the completion time iteratively from the completion time of the preceding job, which is
either larger or smaller than the box placement variable, thus requiring two inequations.
Depending on xjk, 1 ≤ j < k ≤ n, either (5e) or (5f) ensure as disjunctive constraints
that boxes j, k are not overlapping while each is placed in its interval (5g). The objective
is to choose feasible box placements π1, . . . , πn that minimize Cn, the completion time
of the last job.

7.2. Heuristics

An intuitive placement for the boxes is to order them identical to the job sequence. This
strategy is often used as a standard guideline by production planners in practice. Let us
call this the identity sequence (ID) heuristic.

However, the identity sequence heuristic is mostly far from optimum, as we observe
from test results in Section 8.4. Therefore, it is sensible to improve this solution. We apply
a steepest-descent hill-climbing search to improve this initial box sequence. Repeatedly,
the best neighbor of a sequence is chosen as the next sequence, until arriving at a local
optimum. The neighborhood consists of swaps between all pairs of two boxes. We call
this the identity sequence with a hill climbing search (HC) heuristic.

The resulting solution can be improved even more with a second metaheuristic that
tries to evade local minima. An example is the simulated annealing (SA) method (Kirk-
patrick et al., 1983). For changing the solution, one can use the same neighborhood as
before: swapping arbitrary box pairs. In contrast to a descending hill-climbing search,
this metaheuristic allows ascending to worse solutions to a certain degree. This enables
leaving local minima for finding the global minimum.

7.3. Branch and Bound Algorithm

To solve the given problem exactly, we introduce a branch and bound (B&B) algorithm.
We begin by saving the best sequence of the HC heuristic presented in Section 7.2 and
set the upper bound value to its objective value. Then, we start a depth-first search.
We begin at the root node with the empty partial sequence where all jobs J are open
jobs, JO = J . For each job in JO, in order of the job index, a children node is created by
removing the job from JO and appending the job to the current partial sequence. Then,
we check if bounding and the dominance rule allows pruning the new partial sequence.
Pruning is possible
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(a) if the lower bound of Algorithm 1 is larger or equal to the best known upper bound,
or

(b) if swapping the last placed box with the box right before, or with any other fixed
box of the same width yields a partial schedule for which the dominance rule of
Section 6.1 applies.

Else, this branch node is further explored recursively. When reaching a branch node
with JO = {}, all boxes are placed and the objective φ can be calculated. If φ is smaller
than the current upper bound, we save the sequence and set the upper bound to φ.
After exploring of all non-pruned branches, the last saved sequence is returned, it is an
optimal solution.

7.4. Truncated Branch and Bound Heuristic

In a truncated branch and bound heuristic (TrB&B), we limit the size of the B&B tree.
For this, we constrain the branching factor, which is the number of nodes that emerge
from each node, by maximum branching factor BFmax = min{|JO|,max{dψe, b|JO|/σc}},
for positive constants ψ, σ. Parameter ψ controls the maximum number of branches
at the end of the search tree, and σ at the start and in the middle of the search tree,
depending on the number of free boxes |JO|. To rank and select the most promising
branches, we evaluate all |JO| emerging nodes. For this, we use the identity sequence
as in the ID heuristic in Section 7.2. Hence, we rank by job sequence and, therefore,
select the BFmax smallest job indices from set JO. A further reduction of the tree size is
achieved by use of the heuristic dominance criterion from Section 6.2: First, we test the
heuristic dominance on swapping the last placed box with any other fixed box. Secondly,
we test against the best-known solution with the same JF set.

8. Numerical Results

In a numerical experiment, we assess optimizing the box placement quantitatively.
Moreover, we like to analyze the performance of the algorithms from Section 7. Hence, we
test them on a variety of generated instances and statistically compare their performance.
As a primary criterion, we utilize median runtime and quartile deviation on instance
groups of similar parameters, to find which of the algorithms quickly and robustly yield
exact solutions. For the heuristics, we additionally compare solution quality by counting
optimally solved instances and calculating mean error. We use these criteria to evaluate
which heuristic provides the best tradeoff between runtime and solution quality.
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8.1. Instance Generation

We generate test instances in several variants to evaluate performance in different settings.
A problem instance is characterized by its size, the factors a and b, and each assembly
time and box width.

The main influence on the instance size in practice is the cycle time. In the automotive
industry, high-volume cars in the compact segment have rather small cycle times, which
leaves room for only few operations; their number can be as low as five to ten. On the
other hand, low-volume products like luxury vehicles or trucks have much longer cycle
times. They allow for many more operations per cycle, often in the range from twenty
up to almost thirty. Naturally, this is a more challenging setting, even more so as P is
an NP-hard problem. Therefore, we focus our tests on these larger instance sizes, with
number of jobs n ∈ {16, 20, 24, 28}. The worker velocity v is a multiple of the conveyor
velocity. In practice, it is commonly in the range 8 to 16. To test the algorithms for
extreme velocities, we let v ∈ {2, 4, 8, 16, 32}. In Section 2.3, we distinguish between
three walking strategies. As strategies (A) and (B) are effectively equivalent, we obtain
two variants for setting factors a, b for each v:

(S1) a = 2/(v + 1) and b = 2/(v − 1), as in (A) and (B),
(S2) a = (2v + 1)/(v + 1)2 and b = (2v + 1)/v2, as in (C).

The resulting factors for both variants are listed in Table 1. The assembly time generation
follows an established scheme (Jaehn and Sedding, 2016):

(L1) all equal assembly times l1, . . . , ln = 1,
(L2) all distinct assembly times {l1, . . . , ln} = {1, . . . , n}, which randomly permutes

integers 1, . . . , n,
(L3) assembly times drawn uniformly from {1, . . . , 10},
(L4) assembly times drawn from a geometric distribution with random variable X =

d−λ lnUe for U uniformly distributed in [0, 1] and λ = 2.

As well, we generate box widths in four variants:

(W1) all equal box widths w1, . . . , wn = 1,
(W2) all distinct box widths {w1, . . . , wn} = {1, . . . , n} in a random permutation,
(W3) box widths drawn uniformly from {20, . . . , 23}∪{3 · 20, . . . , 3 · 22}, reflecting seven

divisions of ISO1-pallets,
(W4) box widths drawn from rounded up gamma variates with shape 1.25 and unit

scale, representing measured box width distributions at automotive assembly lines.

To fill the station (here, we let its width s = 10·n), all boxes of an instance are normalized
for a total width of s by scaling and rounding each.

The processing times and the box widths are initially of different scale. This necessitates
a harmonization. Ideally, the station length would equal the last completion time Cn.
The identity sequence heuristic in Section 7.2 places the boxes according to the job
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Table 2. MIP, B&B runtime and performance.

MIP B&B
n Md QD solved Md QD solved

16 0.28 0.62 100% 0.00 0.01 100%
20 2.16 10.52 98% 0.06 0.13 100%
24 25.37 171.43 85% 0.90 3.68 98%
28 205.08 894.88 66% 11.03 73.08 89%

all 4.45 60.25 87% 0.10 1.57 97%

Md: median runtime in seconds
QD: quartile deviation in seconds
solved: percentage of instances solved in 30minutes

sequence. For harmonizing assembly times and box widths, we use this placement and
scale the assembly times linearly by a positive rational factor. The appropriate factor
minimizes the absolute difference |Cn − Π| and is determined by the algorithm of Brent
(1971) for finding a zero of a univariate function.

In summary, the described scheme considers four numbers of jobs n, five times two
variants for a and b, four assembly time variants, and four box width variants. For each
parameter combination, it generates 10 instances. This yields a total of 4 ·(5 ·2) ·4 ·4 ·10 =
6 400 test instances.

8.2. Test Setup

The tested algorithms are implemented in C++. Our data structures use plain STL
containers without additional dependencies. The TrB&B heuristic is parameterized
with ψ = 5, σ = 7. For the simulated annealing algorithm, we rely on the reference
implementation of Press et al. (1992, pp. 448–451) with default parameters. All code is
compiled with GCC 7.2 on Ubuntu Linux, Kernel 4.4, and each instance is executed
separately on an Intel Xeon E5-2680 CPU at 2.80GHz. The MIP model is solved with
Gurobi 7.5. We use its C++ interface to ensure the best performance and disabled
multiprocessing capabilities for a fair comparison. Each instance and algorithm is
terminated after a time limit of 30minutes, hence at least delivering a lower bound
on the runtime. This allows calculating median and quartiles while taking terminated
instances into account.

8.3. Exact Algorithms

In Table 2, measured MIP and B&B runtimes are grouped by instance size n. Apparently,
they grow exponentially, as it is expected to happen for a strongly NP-complete problem.
However, high quartile deviations for both algorithms show that difficulty between
instances varies by a high degree. Nonetheless, both algorithms agree on the difficulty of
each instance, as there is a weak positive correlation of value 0.31 between MIP and
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Figure 9. MIP and B&B runtime in seconds is shown on a logarithmic scale ranging from 1
millisecond (10−3) to 30 minutes (1.8 · 103) in box plots and a scatter plot with a linear regression
line for each n.

B&B runtimes, see Figure 9. Every instance that MIP solves, is as well solved by B&B,
which moreover is 50.0 times faster (median ratio) and solves nearly all instances.

Let us break down the B&B performance in greater detail for one size, n = 24. Median
runtimes are shown for each (v, S) pair in Table 3, and each (L, W) pair in Table 4.
First, the worker velocity apparently affects problem difficulty. It peaks at v = 16 and
is easiest for the slowest velocity v = 2. We assume that this can be explained by the
behavior of lower bounds. A slow worker velocity corresponds to high a, b values. Hence,
wrongly placed boxes increase processing times by large. In the following, many open
jobs become late, the combinatorial lower bound can predict their placement better,
and thus, its value is higher. The walking strategy influences problem difficulty as well.
Except for v = 16, instances with walking strategy (S1) are throughout easier to solve.
The assembly time variant influences the difficulty in so far that case (L4) is most
difficult and a uniform assembly time in (L1) is easiest. At the same time, the uniform
box width case (W1) is easiest while case (W3) is hardest. Trivial is case (L1, W1) as
the optimum box sequence is the job sequence here. Most difficult is case (L4, W3), its
median runtime is about four times the median for all instances with n = 24. Still, its
median is within the upper quartile. Hence, the median runtime increase is moderate for
the most difficult instance class.

In the literature, material fetching accounts for about 10–15% of total work time (Scholl
et al., 2013). Let us look at our most realistic choices for worker velocity, v = 16 and
v = 8 (e.g., the case study in Klampfl et al. (2006) similarly assumes v = 13.6). Our
results conform to these values with 9–16% mean walking time of total work time in
optimal solutions, see Table 3.
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Table 3. B&B median runtime in seconds for instance size n = 24 is displayed for all pairs of
walking velocity and walking strategy settings. Below is the mean percentage walking time MPW in
optimum solutions for different velocities.

v = 2 v = 4 v = 8 v = 16 v = 32

S1 0.02 0.42 1.81 3.88 1.74
S2 0.05 0.91 2.06 3.14 2.26

MPW 45% 29% 16% 9% 5%

Table 4. B&B median runtime in seconds for instance size n = 24 is displayed for all pairs of
assembly time and box width settings.

L1 L2 L3 L4

W1 0.00 0.16 0.15 1.54
W2 0.32 1.99 1.88 3.17
W3 1.37 2.17 2.33 3.90
W4 0.28 1.26 1.15 2.90

Table 5. Heuristics’ runtime and performance on instances that B&B solved in 10 minutes.

ID HC SA TrB&B
n opt MPE opt MPE opt MPE opt MPE

16 23% 19% 91% 0.31% 94% 0.18% 98% 0.06%
20 19% 20% 89% 0.29% 94% 0.13% 98% 0.06%
24 16% 22% 84% 0.35% 90% 0.13% 96% 0.11%
28 16% 20% 84% 0.23% 89% 0.11% 96% 0.05%

all 18% 20% 87% 0.29% 92% 0.14% 97% 0.07%

opt: percentage of optimally solved instances
MPE: mean percentage error to minimum walking time

8.4. Heuristics

Results for the heuristics are shown in Table 5. It lists median runtimes, fraction of
optimally solved instances, and mean percentage error MPE, which is the mean of the
percentage walking time error

PE = φ− φ∗

φ∗ −
∑

j∈J lj
· 100%,

comparing achieved and minimum walking time, where φ∗ is the optimum and φ the
heuristic’s objective.

The ID heuristic orders all boxes in job sequence. Surprisingly, this is optimal in 18%
of all instances. However, its use is fairly limited: a MPE of 20% is quite high. In practice,
this natural order is often used, hence the motivation for improvement is high. Applying
a hill climbing search (HC) on this greatly improves the result. Then, the number of
optimally solved instances raises to 87% while the MPE drops to 0.29%. Moreover, the
median computation time is still not measurable. This result improves further with a
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simulated annealing search that temporarily allows worse solutions. Here, the number
of solved instances increases to 92% and decreases the MPE to 0.14%. This at least
increases median computation time to 0.013 seconds.

A different approach is taken by the TrB&B heuristic. Here, the solution quality
further improves by a fairly large amount by optimally solving 97% instances, with a
further reduced MPE of 0.07%. Moreover, the median TrB&B runtime of 0.002 seconds
is fairly lower than the runtime of the simulated annealing. Concluding, although the
TrB&B heuristic is more elaborate to implement, both runtime and quality results
suggest that this effort is worthwhile.

9. Assessment of Placements in Job Order

A standard, intuitive strategy for placing the boxes is ordering them identically to the
sequence of jobs. In our numerical study, this is represented by the ID heuristic. The
results show it is able to deliver a percentage walking time error PEID below 5% for
a third (34%) of the solved instances. However, the error is above 20% for another
third (35%). This can correspond to a noticeable financial impact. To address this,
practitioners should aim to at least recognize instances of particularly high optimization
potential. For that to happen, we contribute an easy to handle criterion that allows for
an evaluation even without performing a full optimization.

9.1. Financial Impact

In the following, we estimate the process cost savings of rearranging intuitively placed
boxes with the model in Gaukler and Hausman (2008) for a sample automotive assembly
with 80 stations. Clearly, production processing time directly influences process costs.
They define process cost savings per time unit by PCS(l̄) = γ · λ · I · l̄, with production
time cost γ in cost per time unit, number of end products λ per time unit, number of
assembly line stations I, and saved time l̄ in time units per station. In their numerical
study, Gaukler and Hausman (2008) assume γ = $1/min, λ = 1/min, I = 80 stations.
The cycle time is 1 min. We assume that like in the numerical study, mean total work
time percentage error of placement in job order is 3.22% and thus, cycle time decreases
by l̄ = 0.0297 min. Thus, process cost savings amount to $2.38/min. Scaling up to one
year, Gaukler and Hausman (2008) assume two shifts per day at 6.5 hours each, and
300 days per year, which gives λ = 234 000/yr. Hence, following this model, estimated
process cost savings per year amount on average to $556 044/yr for 80 stations.

9.2. Instance Classification

For a practitioner, it is important to quickly recognize instances where the ID solution
is inadequate, bearing noticeable optimization potential. In the following, we introduce
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PELS ≤ 5%

PELS > 5%

0.970 0.980 0.990 0.995 1.000
ρ (correlation between LS completion times and box positions)

Figure 10. The partition of the observation instances I∗10% into PEID ≤ 5% (an acceptable
percentage walking time error of the ID solution) and PEID > 5% shows in the box plot that the
lower and upper quartiles meet at ρ = 0.996.

ρ ≥ 0.996

ρ < 0.996

0% 10%20%30%40%50% 75% 100% 150% 200%
PELS (percentage walk time error)

Figure 11. The box plot shows a classification of validation instances I∗90% into ρ ≥ 0.996 (a limit
for the correlation coefficient between completion times and box positions in the natural placement)
and ρ < 0.996 successfully recognizes 77% of the instances with an ID solution’s percentage walking
time error PEID above 5%. This allows practitioners to quickly recognize instances where the ID
solution of ordering boxes in job order tends to be suboptimal.

a suitable criterion. In particular, we presume the error is small if the points of job
completion are close to box positions in the ID solution. This is subsumed by the
correlation between completion time and box position. We first analyze only a subset
of all instances to avoid overfitting. Let I∗10% be a 10% random sample of all instances
with known optimum. Spearman’s rank correlation coefficient rs = −0.652 shows there
is a strong linear relationship with between PEID and ρ, where

ρ = corr
(
〈Cj〉j∈J , 〈πj〉j∈J

)
is the Pearson correlation coefficient between the ID solution’s completion times and
box positions. We set 5% as an acceptable upper limit for the percentage error of an
ID solution. This partitions the instances I∗10% into two sets which are shown in a box
plot in Figure 10. It shows that in the instance subset with PEID ≤ 5%, the lower (25%)
quartile for ρ is 0.996. For the PEID > 5% instances, the upper (75%) quartile is 0.996.
Thus, the quartiles meet at the same value. Although there is an overlap, this observation
hints on using ρ < 0.996 as a classifier to decide if an ID solution is suboptimal.

To test this hypothesis, we classify the remaining instances I∗90% = I∗ \ I∗10% by
ρ ≥ 0.996. The resulting partition is depicted in a box plot in Figure 11. Association
between two binary variables is commonly measured by the phi coefficient; value ϕ = 0.48
indicates a clear relationship between ρ ≥ 0.996 and PEID ≤ 5%. For ρ ≥ 0.996, median
PEID is 2%; while for ρ < 0.996, median PEID is 21.5%. Moreover, the upper quantile
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PEID is 10% for ρ < 0.996 instances, and the lower quantile PEID for ρ < 0.996 instances
is 9.5%. Hence, the criterion finds a suitable partition, for which the median values are
clearly in the right range and moreover, the quartiles meet at a similar values. Of course,
there is an error: 15% of the instances are missed by the criterion, wrongly classified
as PEID ≤ 5% although they actually have PEID > 5%. This error decreases to 4%
unrecognized PEID < 20% instances. On the other hand, selecting for ρ < 0.996 allows
to correctly recognize 77% of the instances with PEID > 5%, and 88% of the instances
with PEID > 20%.

For an illustration, let us apply it to the example instance from Figure 1 and 2.
Its correlation coefficient ρ = corr (〈2, 4, 6, 8〉, 〈4, 8, 9, 10〉) ≈ 0.933 is well below 0.996.
Hence, the criterion indicates optimization potential for the ID solution. Indeed, the
actual percentage error PEID = 8.822−8.584

8.584−8 · 100% ≈ 41% considerably exceeds 5%.
Concluding, selecting instances with ρ < 0.996 successfully filters test instances for

which the ID solution of ordering boxes in job sequence is particularly worse. Moreover,
this criterion is readily usable by practitioners because all required input is obtained
by just measuring completion times and box positions. However, please note that it
is required to validate the criterion on present particular conditions, especially if they
depart from the range of settings in Section 8.1.

10. Conclusion

We introduce a core box placement problem at a moving assembly line to minimize
worker walking times. Although it turns out as NP-hard in the strong sense, we find
two polynomial cases which facilitate the construction of a lower bound. A dominance
rule allows the direct comparison of partial solutions if they exchange two boxes without
affecting others. Moreover, the latter constraint is alleviated by a heuristic dominance
rule. By this, we introduce an exact branch and bound search as well as a heuristic version.
Numerical results show that both possess superior runtime and quality compared to
solving mixed integer programming models and metaheuristic approaches. Moreover, the
tests provide convincing evidence for the practical relevance of this approach: compared
to the commonly used, intuitive strategy of placing boxes in the order of assembly
operations, optimum solutions attain a substantial mean walking time reduction of 20%.
Resulting process costs savings alone are estimated at an average of $556 044/yr for
80 stations. Therefore, we devise a criterion to assess the gap of an instance with just a
few measurements, see Section 9.2.

The assessment of model assumptions (see Section 2.2) shows that the constructed
model is already close to reality. As it is nonetheless relatively generic, it should also
be suited for derivation and extension in several directions. Hence, by shifting the
assumptions we suppose it is feasible to expand the model’s applicability to further real
world scenarios. Such a change may even lead to a shorter walking time: For example,
if it is allowed to alter the sequence of assembly operations (removing assumption A4)
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in addition to optimizing the box placement in a holistic optimization, the alignment
of job start times and box positions can improve further. For this, one can couple the
described placement optimization with a job sequence optimization model as in Jaehn
and Sedding (2016). Another research direction is extending our model to the widespread
mixed-model assembly line (removing assumption A3). This enables the assembly of
several different products, which alternate between cycles. Such a production system is
studied in terms of line balancing and sequencing in Thomopoulos (1967), see Battaïa
and Dolgui (2013); Boysen et al. (2008, 2009) for recent reviews on both topics. It
is in common use in automotive final assembly to produce several car models. Each
has specific operations and material requirements. Hence, parts of several products are
intermixed along the line. This can impact walking times positively: As the points in time
for fetching parts usually differ between products, it is more likely that each product’s
subset of boxes can be placed close to their ideal positions. However, optimizing this
placement is computationally challenging as it impacts walking times for all product
sequences at once. To minimize total walking time, it is thus of interest to devise efficient
algorithms. In our literature review, we see that already the studied sequencing problem is
dissimilar to other scheduling problems. Thus, we find few work to derive from. However,
preliminary tests show that a suitable strategy is to extend our approach accordingly.
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