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Abstract
We present a massively parallel object recognition system based on a
cortex-like structure. Due to its nature, this general, biologically
motivated system can be parallelized efficiently on recent many-core
graphics processing units (GPU). By implementing the entire pipeline on
the GPU, by rigorously optimizing memory bandwidth and by minimizing
branch divergence, we achieve significant speedup compared to both
recent CPU as well as GPU implementations for reasonably sized
feature dictionaries. We demonstrate an interactive application even on a
less powerful laptop which is able to classify webcam images and to
learn novel categories in real time.

Feature Extraction Inspired by Visual Cortex
We built our system closely along the approved base object recognition
model of Mutch&Lowe [1].
Learning:

I feature extraction out of training images
I feature weighting: measure similarity of features to training images
I SVM training with obtained feature vector

Classification:
I feature weighting: measure similarity of features to test image
I SVM classification with obtained feature vector

Feature Vector Computation:
I S-layers: Convolution with templates (Gabor) or patches.

Selectivity for a specific feature increases by applying a
bell-shaped weighting curve to the resulting response.

I C-layers: non-linear reduction, namely maximum extraction over an
area or an entire pyramid followed by sub-sampling. Reduces the
amount of information and establishes scale and shift invariance.

…

…

S1 × × × ×S2C1

C2

Image layer

random features extracted
from training images

area
max×

pyramid max

Figure: Hierarchical feature extraction and weighting pipeline.

Obs.: Layers operate mostly data-parallel⇒ suits GPU computation.

Parallelization
GPU-Programming Principles:

I SIMD: Many threads doing the same operations
I Caching: Main memory access is expensive, requiring careful

thread layout for fast throughput
Applying those principles we emphasize the following design decisions:
Single Thread per Output Pixel:

A thread reads a small area to interpolate over and writes one pixel.
⇒ exploits caching hardware effectively.

Layers S2 and C2: (most time critical)
We partition the problem such that each block of threads operates
on one patch and performs the convolution scale by scale at all
orientations. While threads operate in lock-step, blocks can run
concurrently even if they do not execute the same code path.
Therefore, each thread block can easily run differently sized loops,
allowing for different patch size processing. We need p (= number of
patches) blocks, and the algorithm scales with the number of
processing units.
An additional, significant benefit is achieved by integrating the S2
and C2 layer into the same kernel.

Memory Structure
Important design decisions have to be made for the data structures and
the organization of the data flow to reduce bandwidth utilization between
CPU and GPU memory, and within the GPU. Some of them are:
Main Memory to GPU Transfer: Reduced to a minimum by implementing

the entire processing pipeline on the GPU.
Texture Cached Read-Only Access: In all layers, we used GPU texturing

units which provide cached access to arrays (1D, 2D) and allow for
automatic boundary handling.

Image Pyramid Data Structure: Separate 2D textures for each pyramid
and pyramid scale are tedious and inflexible to program in CUDA.
We used a only one sliding 2D-texture over multiple kernel calls.
Even with the kernel call overhead it is ≈ 50% faster.

Results
Correctness: We achieve classification rates comparable to

Mutch&Lowe’s reference implementation [1], here with Caltech-101:
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Performance: Our GPU implementation in CUDA is vastly faster than the
CPU reference implementation [1] and faster than Mutch’s recent
GPU cortex simulator framework (CNS) [2]:
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Mobile Real Time Application The significant speedup, especially for
moderate numbers of patches, allows us to address real-time object
recognition even on small mobile GPUs such as a low end NVIDIA
Geforce 9400M in a 2008’ Apple Macbook Pro.
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